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Abstract

In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not
alone generate a gauge transformation. By direct calculation it is found that each first-
class constraint in Maxwell’s theory generates a change in the electric field E by an
arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint p’,; = 0
still holds, but being a function of derivatives of momenta, it is not directly about
E (a function of derivatives of A,). Only a special combination of the two first-class
constraints, the Anderson-Bergmann (1951)-Castellani gauge generator G, leaves E
unchanged. This problem is avoided if one uses a first-class constraint as the generator
of a canonical transformation; but that partly strips the canonical coordinates of phys-
ical meaning as electromagnetic potentials and makes the electric field depend on the
smearing function, bad behavior illustrating the wisdom of the Anderson-Bergmann
(1951) Lagrangian orientation of interesting canonical transformations.

The need to keep gauge-invariant the relation ¢— %—IZ = —FE; —p' = 0 supports using
the total Hamiltonian rather than the extended Hamiltonian. The results extend the
Lagrangian-oriented reforms of Castellani, Sugano, Pons, Salisbury, Shepley, etc. by
showing the inequivalence of the extended Hamiltonian to the total Hamiltonian (and
hence the Lagrangian) even for observables, properly construed in the sense implying
empirical equivalence.



Dirac and others have noticed the arbitrary velocities multiplying the primary con-
straints outside the canonical Hamiltonian while apparently overlooking the corre-
sponding arbitrary coordinates multiplying the secondary constraints inside the canon-
ical Hamiltonian, and so wrongly ascribed the gauge quality to the primaries alone, not
the primary-secondary team G. Hence the Dirac conjecture about secondary first-class
constraints rests upon a false presupposition. The usual concept of Dirac observables
should also be modified to employ the gauge generator G, not the first-class constraints
separately, so that the Hamiltonian observables become equivalent to the Lagrangian
ones such as the electromagnetic field F),,.

An appendix discusses analogous calculations for GR and sketches their conceptual
consequences.

Keywords: Dirac-Bergmann constrained dynamics; gauge transformations; canoni-
cal quantization; observables; Hamiltonian methods
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1 Introduction

In the early stages of research into constrained Hamiltonian dynamics by Bergmann’s
school, it was important to ensure that the new Hamiltonian formalism agreed with the
established Lagrangian formalism. That was very reasonable, for what other criteria for
success were there at that stage? One specific manifestation of Hamiltonian-Lagrangian
equivalence was the recovery of the usual 4-dimensional Lagrangian gauge transforma-
tions for Maxwell’s electromagnetism and (more laboriously) GR by Anderson and
Bergmann [1]. 4-dimensional Lagrangian-equivalent gauge transformations were im-
plemented by Anderson and Bergmann in the Hamiltonian formalism using the gauge
generator (which I will call G), a specially tuned sum of the first-class constraints,
primary and secondary, in electromagnetism or GR [1].

At some point, early on and explicitly in Dirac’s work and increasingly in a tacit way
by the mid-1950s among Bergmann and collaborators, equivalence with 4-dimensional
Lagrangian considerations came to play a less significant role. Instead the idea that
a first-class constraint by itself generates a gauge transformation became increasingly
prominent. That claim, which goes back to Bergmann and Dirac [2-5], has been called



the “standard” interpretation [6] and is adopted throughout Henneaux and Teitel-
boim’s book [7, pp. 18, 54] and countless other places [8-10]. This idea displaced the
Anderson-Bergmann gauge generator until the 1980s and remains a widely held view,
though no longer a completely dominant one in the wake of the Lagrangian-oriented
reforms of Castellani, Sugano, Pons, Salisbury, Shepley, etc. Closely paralleling the de-
bate between the Lagrangian-equivalent gauge generator G and the distinctively Hamil-
tonian idea that a first-class constraint generates a gauge transformation is the debate
between the Lagrangian-equivalent total Hamiltonian (which adds to the canonical
Hamiltonian all the primary constraints, whether first- or second-class) and Dirac’s ex-
tended Hamiltonian Hg, which adds to the total Hamiltonian the first-class secondary
constraints.

A guiding theme of Pons, Shepley, and Salisbury’s series of works [11-13] is impor-
tant:

We have been guided by the principle that the Lagrangian and Hamiltonian
formalisms should be equivalent (see ...) in coming to the conclusion that
they in fact are. [14, p. 17; embedded reference is to [15]]

While proponents of the total Hamiltonian have emphasized the value of making
the Hamiltonian formalism equivalent to the Lagrangian, what has apparently been
lacking until now is a proof that the Lagrangian-inequivalent extended Hamiltonian is
erroneous. While inequivalence of the extended Hamiltonian to the Lagrangian might
seem worrisome, it is widely held that the difference is confined to gauge-dependent
unobservable quantities and hence makes no real physical difference. If that claim of
empirical equivalence were true, it would be a good defense of the permissibility of
extending the Hamiltonian. But is that claim of empirical equivalence true?

This paper shows that the Lagrangian-equivalent view of the early Anderson-
Bergmann work [1] and the more recent Lagrangian-oriented reforms are correct, that
is, are mandatory rather than merely an interesting option. It does so by showing
by direct calculation that a first-class constraint makes an observable difference to the
observable electrical field, indeed a bad difference: it spoils Gauss’s law V - E = 0. The
calculation is perhaps too easy to have seemed worth checking to most authors.

This paper also critiques the usual Hamiltonian-focused views of observables de-
ployed in the extended Hamiltonian tradition to divert attention from such a calcula-
tion or (in the case of the one paper known to me that calculates the relevant Poisson
brackets [16]) to explain away the embarrassment of a Gauss’s law-violating change
in the electric field. Attention is paid to which variables have physical meaning when
(off-shell vs. on-shell), etc., with the consequence that canonical momenta have observ-



able significance only derivatively and on-shell rather than primordially and off-shell.
The fact that introducing a Hamiltonian formalism neither increases nor decreases
one’s experimental powers is implemented consistently. Indeed apart from constraints,
canonical momenta play basically the role of auxiliary fields in the Hamiltonian action
[ dt(pg— H(q, p)): one can vary with respect to p, get an equation ¢ — %—I; = 0 to solve
for p, and then use it to eliminate p from the action, getting [ d¢L. One would scarcely
call an auxiliary field a primordial observable and the remaining dependence on ¢ or
its derivatives in L derived.

This paper also diagnoses a mistaken ‘proof’ that a first-class primary constraint
generates a gauge transformation. This mistake in Dirac’s book [5] has been copied
in various places, including two more recent books [7,10]. One can see by inspection
that the 3-vector potential A; is left alone by the sum of first-class primary constraints,
while the scalar potential is changed. But the science of electrostatics [17] explores the
physical differences associated with different scalar potentials Ay and the same (van-
ishing) 3-vector potential A;. Thus Dirac et al. have pronounced observably different
electric fields to be gauge-related. Dirac’s mistake involves failing to note the term
—Agp',; in the canonical Hamiltonian density for electromagnetism. Thinking that
the secondary constraints either were absent or cancelled out in different evolutions
(which they do not because the coefficient —A( of the secondary constraint is gauge-
dependent), Dirac felt the need to add in the secondary first-class constraints by hand,
extending the Hamiltonian, in order to recover the gauge freedom that supposedly was
missing. Thus the motivation for the extended Hamiltonian and the original ‘proof’
that primary first-class constraints generate gauge transformations are dispelled.

This paper also explores the consequences for Dirac’s conjecture that all first-class
secondary constraints generate gauge transformations. That conjecture was predicated
on the assumed validity of the proof that primary first-class constraints generate gauge
transformations. With that proof refuted, the Dirac conjecture cannot even get started;
it rests on a false presupposition.

The actual situation is quite the reverse of the idea that a first-class constraint
generates a gauge transformation: the most obvious interesting examples of first-class
constraints, as in Maxwell’s electromagnetism and in General Relativity, change the
physical state or history, and in a bad way, spoiling the Lagrangian constraints, the
constraints in terms of ¢ and ¢. Those are the physically relevant constraints, parts of
Maxwell’s equations (Gauss’s law) or the Einstein equations; the canonical momenta p
are merely auxiliary quantities useful insofar as they lead back to the proper behavior
for ¢ and ¢. While there might be examples where a first-class constraint does generate



a gauge transformation—e.g., —such cases are rare or uninteresting in comparison to
those that do not.! Instead, a gauge transformation is generated by a special combi-
nation of first-class constraints, namely, the gauge generator G [1,20-22]. It long was
easy to neglect 4-dimensional coordinate transformations in GR because a usable gauge
generator was unavailable after the 3 4 1 split innovation in 1958 [23,24] rendered the
original (rather fearsome) G [1] obsolete by trivializing the primary constraints. The
3+ 1 gauge generator G finally appeared in 1982 [20], the lengthy delay indicating that
no one was looking for it for a long time.

For Maxwell’s electromagnetism, where everyone knows what a gauge transforma-
tion is—what makes no physical difference, namely, leaving E and B unchanged—and
where all the calculations are easy, one can test the claim that a first-class constraint
generates a gauge transformation. There is no room for “interpretation,” “definition,”
“assumption,” “demand,” or the like. Additional postulates are either redundant or
erroneous. Surprisingly, given the age of the claim [2, 3], such a test apparently hasn’t
been made before, at least not completely and successfully (c.f. [25-28], on which
more below), and has rarely been attempted. Perhaps the temptation to default to
prior knowledge has been irresistible. By now the sanction of tradition and authority
also operate. Views about observability have also deflected attention away from the
question in the context of the extended Hamiltonian. Anyway the test can be made
by re-mathematizing the verbal formula. The result is clearly negative: a first-class
constraint—either the primary or the secondary—generates a physical difference, a
change in E. This change involves the gradient of an arbitrary function, implying that
V-E # 0, spoiling Gauss’s law. Similar problems arise in GR, as will be discussed in
a subsequent work in preparation. An error early in Dirac’s book contributed to the
problem; the same problem reappears in the books by Henneaux and Teitelboim and

LA free relativistic particle with all 4 coordinates as dynamical functions of an arbitrary parameter, but
without an auxiliary lapse function N, is an example kindly mentioned by Josep Pons. If one has the
auxiliary lapse function [11, 18], one gets a primary and a secondary constraint, the latter including a piece
quadratic in momenta—Ilooking naively like a Hamiltonian, one might say. If one instead integrates out the
lapse using g—f, = 0, then the resulting Hamiltonian formalism has vanishing canonical Hamiltonian, while
the primary constraint becomes more interesting. Conserving the primary constraint gives no secondary or
higher constraint, partly because the canonical Hamiltonian vanishes. The solitary primary constraint is
first-class by antisymmetry of the Poisson bracket. In the absence of higher-order constraints, the gauge
generator is just the smeared primary first-class constraint, so in this case a primary constraint does indeed
generate a gauge transformation. A free relativistic particle is of course a system for which nothing happens.
Potentially more interesting is the fact that one can integrate out the lapse in GR as in the Baierlein-Sharp-
Wheeler action. Then the Hamiltonian constraint arises at the primary level [19].



by Rothe and Rothe [7,10].

An alternative use of a first-class constraint, using it as a generating function in a
canonical transformation, is also considered. While not illegal, such a canonical trans-
formation is unrelated to electromagnetic gauge freedom (making as much sense for
Proca’s massive electromagnetism with only second-class constraints as for Maxwell’s
with only first-class constraints) and, as Anderson and Bergmann [1] would have pre-
dicted, alters the physical significance of the canonical field variables.

2 Expected Payoff of Clarity about First-Class
Constraints and Gauge Transformations

While the process of Lagrangian-equivalent reform started some time ago, it has by
no means swept the field. One also finds works that inconsistently mix the two views.
While such issues cause little trouble in electromagnetism because all calculations are
easy and one already knows all the right answers anyway and so does not depend on the
Hamiltonian formalism, it does matter for GR, where the right answers are sometimes
unknown or controversial and many calculations are difficult.

It is therefore important both to show that the extended Hamiltonian formalism and
associated view of gauge freedom are incorrect (as this paper does) and to implement
consistently the consequences of the Lagrangian-equivalent Hamiltonian formalism in
the arenas of change and observables in GR (as successor papers will do). It has been
widely held (or worried) that GR in Hamiltonian form lacks objective change [4, 29—
32]. It also has been widely held in the Hamiltonian context, that “observables” in GR
must be constants of the motion, spatially integrated quantities, or the like [33].

Both these conclusions are motivated largely by the alleged result that a first-class
constraint generates a gauge transformation. Once one realizes that a first-class con-
straint by itself does not generate a gauge transformation, the fact that the Hamiltonian
of GR is just a sum of first-class constraints no longer implies, or even suggests, that
time evolution is just a gauge transformation. Instead room is left for showing that the
Hamiltonian formalism discloses time-dependence in exactly the same context as the
Lagrangian formalism, namely, when there is no time-like Killing vector field. Likewise
one is relieved of the expectation that an observable quantity should have vanishing
Poisson brackets with all of the first-class constraints; instead one might expect ob-
servables to have vanishing Poisson bracket with the gauge generator G. (Of course
additional modification might be necessary for Lagrangian equivalence in relation to



GR, where the symmetry is external and one anticipates Lie derivative terms; but re-
placing the first-class constraints with G is still a step in the right direction.) While
applications to GR will be saved for another work due to the amount of calculation
involved, achieving clarity about first-class constraints and gauge transformations in
Maxwell’s electromagnetism will be a useful step.

3 A First-Class Primary Constraint Does Not
Generate a Gauge Transformation

It is widely held [5, p. 21] [7, p. 17] [34] [10, p. 68] that a primary first-class con-
straint generates a gauge transformation. Dirac purportedly proves this claim early
in his book, and the same argument reappears in many places including authoritative
books, some of them not very old. In a later section the tempting error that leads
to this conclusion, namely, neglecting the fact that first-class secondary constraints
with gauge-dependent coefficients already appear in the canonical Hamiltonian, will
be discussed. For now a direct and apparently novel (surprisingly enough) test will be
applied to show simply that the transformation effected by a first-class primary con-
straint is not generally a gauge transformation. The test is simply ascertaining what
happens to the electric field in Maxwell’s electromagnetism, the standard example of
a simple yet physically relevant relativistic field theory.

The electromagnetic field strength F),, =g 0,A, — 0, A, is unchanged by A, —
A, —0Ope. E and B are parts of F, v and hence constructed from derivatives of A,. (For
a charged particle in an electromagnetic field, or for a charged scalar field interacting
with the electromagnetic field, it is the derivatives of A, not the canonical momentum
conjugate to A,, to which charge responds.) That fact will prove important once, in
the Hamiltonian formulation, one has conceptually independent canonical momenta
p' satisfying the secondary first-class constraint p’,; = 0. Electromagnetic gauge trans-
formations are defined “off-shell,” without assuming the field equations. But off-shell
there is no relationship between A; and p’, and hence none between E and p'. The
constraint p’,; = 0 in phase space can cease to be equivalent to V - E = 0 if one does
something inadvisable—such as treating p° or p’,; as if it (by itself) generated a gauge
transformation. That is somewhat as Anderson and Bergmann warned in discussing
canonical transformations that do not reflect Lagrangian invariances: the meanings
of the canonical coordinates and/or momenta can be changed [1]. The relationship
between first-class constraints, the gauge generator (G, and canonical transformations



will be explored below. It turns out that G does basically the same good thing whether
one simply takes Poisson brackets directly or makes a canonical transformation; a first-
class constraint does either something permitted but pointless (a position-dependent
field redefinition) or something disastrous (spoiling Gauss’s law).

The Legendre transformation from £ and Au to H and p* fails because p* =4 oA,
is not soluble for Au [35]. One gets a primary constraint p°(z) =4 Bflf,o = 0. Likewise

in General Relativity [23,24], one can choose a divergence in £ and a set of fields

using a 3 + 1 split, the lapse N = 1/1/—¢% and shift vector 5* = 3gijgj0, such that

0 =df aaTﬁ,O = 0 and p; =4 8%70 = 0. One needs the dynamical preservation of the

primary constraints, from which emerge secondary constraints. In electromagnetism

this constraint is Gauss’s law, or rather, something equivalent to Gauss’s law using
A _ 5H

. The algorithm of constraint preservation terminates thanks to the constraint
algebra The time evolution is under-specified: there is gauge/coordinate freedom due
to the presence of first-class constraints (having 0 Poisson brackets among themselves,
strongly in electromagnetism, using the constraints themselves in GR). All constraints
in both theories are first-class. The Poisson bracket is

3 (x) oY(y)  d9(z) (y) .
{0(e), () df/dzZ( 2 3pa(2) 6pA<z>6qA<z>>’

the fundamental ones are {¢*(z), pp(y)} = d56(2, 7).

These familiar matters set up the belated test of whether a first-class constraint
really generates a gauge transformation. FEzactly what do first-class constraints have
to do with gauge freedom? Curiously, this question has two standard but incompat-
ible answers in the literature on constrained dynamics, both dating to the 1950s in
Bergmann’s work. One of them is correct, namely, that the gauge generator G [1,20-
22| generates a gauge transformation, a change in the description of the physical state
(or history, if GR is the theory in question) that makes no objective difference. This
answer is motivated by Hamiltonian-Lagrangian equivalence and is associated with the
total Hamilton. It was eclipsed during the 1950s and has slowly reappeared since the
1980s. However, its consequences for observables, change in GR, and similar founda-
tional questions have not been fully explored yet. The other standard answer, more
influential in the literature on canonical GR, is that a first-class constraint (by itself)
generates a gauge transformation [2, 3, 6,7, 10, 25, 34], a distinctively Hamiltonian claim
associated with the extended Hamiltonian.

In electromagnetism the fundamental Poisson brackets are {A4,(z),p"(y)} =
6;,0(x,y). The constraints are the primary p(x) = 0 and the secondary p’,; (x) = 0.



One hopes to keep the latter equivalent to Gauss’s law, but that isn’t just automatic be-
cause Gauss’s law involves the electric field, whereas the secondary constraint involves
a canonical momentum, which a priori is unrelated to the electric field and becomes
equal to it (up to a sign, depending on one’s conventions) only using the equations of
motion ¢ = %—I;.

What does p’(x) do? By re-mathematizing the claim that a first-class constraint
generates a gauge transformation, one predicts that p°(z) changes A, via a gauge
transformation. Smearing p°(y) with arbitrary £(¢,y) and taking the Poisson bracket

gives [35, p. 134]

0 A () = {Au(), /dsypo(y)i(t y)} = (). (1)

While this expression doesn’t look just as one would expect from experience with
the Lagrangian, might it reflect (as is oftened claimed abstractly) some more general
gauge invariance disclosed by the Hamiltonian (especially the extended Hamiltonian)
formalism? One can calculate that

§Fuy =df Fuw[A+ 6A] — F [A] = 0,64, — 8,64, = 9,0, — 9,£6)). (2)

This definition reflects the standard gauge variation of a velocity as the time derivative
of the gauge variation of the corresponding coordinate. Letting p = m, v = n, one sees
that the magnetic field is invariant [35, p. 134], which is a good sign.

What happens to the electric field E? Here Sundermeyer stops short (35, p. 134].2
Let p=0,v=mn:

§Fgn = —0F = 00 Ay, — 0,0 Ag = BpE80 — 0,600 = —D,€. (3)

Unless one restricts oneself to the very uninteresting special case of spatially constant
¢ (perhaps still depending on time), this is not a gauge transformation, because the
world is different, indeed worse.3 While B is unchanged, E is changed by 8,,¢ (t,x).
Thus Gauss’s law V- E =0 is spoiled: V - E = V2¢ £ 0 typically. This spoilage of the
Lagrangian constraint is not immediately obvious because the secondary constraint
p',;= 0 still holds. The trouble is that this expression, which lives in phase space,

2Costa et al. [16] got the same mathematical result. They failed to discern that it was problematic
physically, for reasons discussed below involving which fields are observable.

3This result shows the inadequacy of the view, which one sometimes hears, that a first-class constraint
generates a time-independent gauge transformation. Even a time-independent £(z) changes E and spoils
Gauss’s law.

10



ceases to mean what one expected. p is independent of ¢, but ¢ is dependent on ¢
by definition; hence ¢ and p are independent, at least until after Poisson brackets are
calculated. E is a familiar function of derivatives of A,; the change in A, implies
a Gauss’s law-violating change in E. While still p',;= 0 (the phase space constraint
surface is preserved), this constraint is no longer equivalent to Gauss’s law: p',;= 0
but V- E # 0. Instead E acts as though some phantom charge density were a source.
The relationship between p and ¢ has been altered, something that Anderson and
Bergmann warned could happen [1]. Changing Eisa physical difference, not a gauge
transformation—indeed a bad physical difference, because spoiling Gauss’s law is bad.

If a first-class constraint does not generate a gauge transformation, one might hope
that a book on constrained dynamics would point that fact out. That expectation is
almost fulfilled. Sundermeyer commented on the “vague relation between first class
constraint transformations and local gauge transformations.” [35, p. 134]. That was
true, but an understatement. Sundermeyer appeared to be in the process of reinventing
the gauge generator in the chapters on electromagnetism and Yang-Mills theories [35,
pp. 134, 168], but did not carry on quite far enough to notice that something bad had
happened to the electric field even after calculating what happened to the potentials.
Thus he did not notice that the indirect relationship between first class constraint
transformations and local gauge transformations that he discerned implied something
crucially wrong with the usual view of the former.

3.1 Claims Overlooking This Problem

Others have fallen into error on this point [25,27]. Bergvelt and de Kerg, applying
their Hamiltonian technique to a Yang-Mills field,

... first note that two points of [final constraint manifold] My of the form
(Ag, A, m) and (Ag, A, ) (i.e. differing only in their Ag-component) are
gauge equivalent. They can be connected by an integral curve of the gauge
vector field A(%m)’ with A = Ay — Ay. So the Ag-component of points of
Mo is physically irrelevant and without loss of generality we can ignore it.
27, p. 133).

This physical equivalence claim contradicts the science of electrostatics, wherein one
studies what electric fields can be generated by merely the scalar potential [17,36].
Presumably their “crucial assumption” that some freedom located in their preceding
paper had no physical significance [37] contributed to this difficulty. One already knows
from the Lagrangian formulation what the gauge freedom is, so there is no room for

11



independent postulates; they are either redundant or erroneous. Gotay, Nester and
Hinds make a similar mistake with the primary constraint [25], as will appear shortly.

4 A First-Class Secondary Constraint Does Not
Generate a Gauge Transformation

What does the secondary constraint p,; (x) do? According to a standard textbook on
constrained dynamics by Henneaux and Teitelboim, excepting a few exotic counterex-
amples,

one postulates, in general, that all first-class constraints generate gauge
transformations. This is the point of view adopted throughout this book.
There are a number of good reasons to do this. First, the distinction between
primary and secondary constraints, being based on the Lagrangian, is not
a natural one from the Hamiltonian point of view....Second, the scheme is
consistent.. .. Third, as we shall see later, the known quantization methods
for constrained systems put all first-class constraints on the same footing,
i.e., treat all of them as gauge generators. It is actually not clear if one can
at all quantize otherwise. Anyway, since the conjecture holds in all physical
applications known so far, the issue is somewhat academic. (A proof of the
Dirac conjecture under simplifying regularity conditions that are generically
fulfilled is given in subsection 3.3.2.) [7, p. 18, emphasis in the original]

This is a striking passage in view of the test that is about to be run on electromagnetism
regarding its secondary constraint and the one that was just run above on the primary
constraint. Getting sensible results does require privileging the Lagrangian formalism,
so one should not downplay the primary wvs. secondary distinction on Hamiltonian
grounds. It would be interesting, but will not be attempted here, to trace all the
influence of the Dirac conjecture in this standard work, as well as to address the third
consideration about quantization methods (about which see [38]).

Another way to find out what the secondary constraint p’,; does to the electric field
is simply to calculate it. To my knowledge, this has not been done, surprisingly enough,
or at least not done successfully and then appropriately understood. (Proponents of the
total Hamiltonian and its gauge generator don’t need to calculate it, because the usual
gauge transformation of A, to A, — J,€ makes the answer obvious. Only proponents
of the extended Hamiltonian and/or the associated claim that a first-class constraint
generates a gauge transformation ought to have done so. But if they had, they’d

12



likely have seen this problem before. Costa et al. did perform relevant calculations
on this point [16]; the reason that they did not discern the absurdity of the result
involves observables and will be discussed below.) The answer is the secondary first-
class constraint also changes E, also generally violating Gauss’s law, at least if one
uses a time-dependent smearing function. If one does not use time-dependent smearing
functions, then one has no way to write G and hence no hope of recovering the usual
electromagnetic gauge transformations as described in, for example, Jackson [17]. Part
of the trouble, as diagnosed by Pons [39], is that Dirac envisioned gauge transformations
as pertaining to 3-dimensional hypersurfaces, whereas Bergmann tended to envision
them (more appropriately for GR given the freedom to slice more or less arbitrarily)
as pertaining to 4-dimensional histories (though Bergmann seems to me not consistent
on that point). Smearing p’,; with an arbitrary function €(t,y), one finds [16, 34]

0
u(0) = {Al0). [ s et )} = 8,5 elt ). @
One can thus find the change in F),,:
0Fy = 0u8A, — 0,64, = 8,(—0, aal €) — dy(—5}, aal ) = 6,,0,0;¢ — 6,0u0ie.  (5)

Clearly B is unchanged, but E’s change is obtained by setting 4 =0, v = n:
§Fon = —O0F = 030,0;¢ — 6'9p0ie = — 0, pe. (6)

Again E is changed by an arbitrary gradient, and Gauss’s law is spoiled: V - E = V2.
One could avoid this change in E using exclusively time-independent smearing func-
tions; but one will thereby fail to recover the usual electromagnetic gauge transforma-
tions in works like Jackson [17]. Imposing time-independence (or spatial homogeneity)
on smearing functions is of course also incompatible with Lorentz invariance (to say
nothing of general covariance for the analogous issue in GR).

So neither constraint by itself generates a gauge transformation (without a pointless
and misleading restriction on smearing, at any rate, which restricts what the constraint
itself is trying to generate). Each makes a bad physical difference. Dirac wrote that
“I haven’t found any example for which there exists first-class secondary constraints
which do generate a change in the physical state.” [5, p. 24] This remark now looks
curious; it’s not easy to find anything interesting that isn’t a counterexample when the
appropriate test is run. 30 years ago Castellani said that

Dirac’s conjecture that all secondary first-class constraints generate sym-
metries is revisited and replaced by a theorem.. .. The old question whether

13



secondary first-class constraints generate gauge symmetries or not . . .is then
solved: they are part of a gauge generator G ... [20, pp. 357, 358]. (emphasis
in the original)

After many years the force of the word “replaced” still has not been absorbed (e.g., [7]):
it involves the elimination of the old erroneous claim, not just the introduction of a
new true claim. Perhaps Castellani’s diplomatic wording has slowed the understanding
of his result. His target was the secondaries in isolation (supposedly the live issue vis-
a-vis the Dirac conjecture), but the same holds for the primaries. Neither generates a
gauge transformation by itself, but the two together, properly tuned, do.

4.1 Claims Overlooking This Problem

One can find examples where these problems should have been noticed. One is the
influential paper by Gotay, Nester and Hinds [25]. (According to Web of Science,
this paper has been cited c¢. 150 times.) Having developed a sophisticated theory,
they rightly turned to applying it to Maxwell’s electromagnetism. Having written the
Hamiltonian field equations, they made a transverse-longitudinal split of the 3-vector
potential A and its canonical momentum. They obtain, among other familiar results,

A
a—l = undetermined,
ot
dAL
——=-VA,.
ot VAL

Thus “the evolution of A and A is arbitrary.” [25] So far, so good—at least if one
counts a single bit of arbitrariness, given that the arbitrarinessin —V A determines the
arbitrariness in the evolution of Az. Time will tell if that interpretation is maintained.

Let us compare the equations of motion [of which the relevant parts just
appeared] and the known gauge freedom of the electromagnetic field with
the predictions of the algorithm....[Something pertaining to the primary
constraint has as]| its effect to generate arbitrary changes in the evolution of
A . This is clearly consistent with the field equations.
Well, it is consistent with the field equations if one pays the price by adding a gradient
in ag% in accord with the familiar electromagnetic gauge freedom. But that turns out
not to be what they have in mind.

Turning now to the first-class secondary constraint . .., we wonder if it is the
generator of physically irrelevant motions. ... [Imposing a suitable demand]
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has the effect of replacing the second of equations [shown above] by

dA; - -
L vA, —
i VA, — Vg

and leaving the others invariant. As A, is arbitrary to begin with, it is
evident that this equation is completely equivalent to [the ones shown|. The
addition of —69 to the right-hand side of this equation has no physical effect
whatsoever. [25, p. 2397].

It is now clear that they envisage two arbitrary functions, not one. But this latter
physical equivalence claim is clearly false. Now that the former claim is disambiguated,
it becomes clearly false also. Thus they wrongly claim of the primary and of the
secondary that a gauge transformation is generated. By taking the divergence of the
modified equation, one sees the falsehood of the second physical equivalence claim:

T2 6T T Ty
:6.%+6.6Al+6.69
9.2 9A 4T T

% (%A 4T T -

V- E+V%9=0. (7)

Gotay, Nester and Hinds see their result as a vindication of the extended Hamiltonian
formalism for the case of electromagnetism, but it isn’t, because the electric field is
changed by a so-called gauge transformation and Gauss’s Law is spoiled. This problem

illustrates a remark of Henneaux and Teitelboim’s:

The identification of the gauge orbits with the null surfaces of the induced
two-form relies strongly on the postulate made throughout the book that all
first-class constraints generate gauge transformations. If this were not the
case, the gauge orbits would be strictly smaller than the null surfaces, and
there would be null directions not associated with any gauge transformation.
[7, p. 54]
Another difficulty appears in Faddeev’s treatment [26], which, largely through no-
tational confusion, gives the impression of showing that the constraint p’,; generates
a standard electromagnetic gauge transformation. He uses the symbol Ej for the
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canonical momentum conjugate to Ay. (Faddeev does not bother introducing a canon-
ical momentum conjugate to Agy, so this paragraph will avoid the term “secondary
constraint.”) It isn’t difficult to show that the canonical momentum FEj has vanish-
ing Poisson bracket with the smeared constraint [ d3zA(x)0)E) for smearing function
A(z). But this result is hardly decisive for the electric field. Using the letter E for a
canonical momentum cannot make a canonical momentum into the electric field, which
is still just the familiar Ag,; —A;, which pushes on charged matter. Taking results about
the canonical momentum and treating them as applying to the electric field is, in effect,
the fallacy of equivocation regarding the meaning of Ey. Faddeev does not investigate,
directly or indirectly, what a Poisson bracket with f d%A(:L")@kEk does to Ap,; —AZ-.
Hence the supposed demonstration that | d3zA(z)0LE), generates an electromagnetic
gauge transformation, fails. The relation between the electric field and the canonical
momentum in facts holds only on-shell, that is, after all Poisson brackets are taken,
because it reappears in the equation ¢ = %—I; after being discarded in the Legendre
transformation. Hence showing that the canonical momentum has vanishing Poisson
bracket with [ d3A(z)0xE) does not show the same result for the electric field. If one
hasn’t defined a Poisson bracket for a velocity, one can at least ascertain what the
smeared divergence of the canonical 3-momentum does to Ag,; and A; and then infer
the altered F),, (as was just done above). If one defines a Poisson bracket for a velocity
(following Anderson and Bergmann [1]), one can calculate the Poisson bracket of the
electric field with the smeared divergence of the canonical 3-momentum and find that it
isn’t 0 (as is done below). Thus the smeared divergence of the canonical 3-momentum
does not generate a gauge transformation. But the error seems to be tempting and to
pass by without remark.

5 Gauge Generator as Special Sum of First-
Class Constraints

While Dirac studies electromagnetism [5], his process of adding terms to and subtract-
ing terms from the Hamiltonian is not systematic. Neither is there much concern to
preserve equivalence to the Lagrangian formalism [40]. He seems not to calculate what
his first-class constraints actually do.

One can add the two independently smeared constraints’ actions together:

5Au(x) = {A(x), / Bylp WE(E y) + Pi (9)e(t )]} = 0% — 5idhe, (8)
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getting their combined change in E:
§Fon = —0E = —8,€ — 9,00e. (9)

If one puts the constraints to work together as a team by setting £ = —¢é to make the
0Fy, = 0, then

§Au(x) = {Au(z), /d?’y[—po(y)é(t, y)+ 0 (W)elt, y)]} = —0p¢ — 6,0ie = =D, (10)

which is good. Not surprisingly in light of the form of the gauge generator [1,20, 22]
G= [ datpic o), (1)

p® and p’,; generate compensating changes in E when suitably combined. Indeed
we have pieced together G by demanding that the changes in E cancel out. Two
wrongs, with opposite signs and time differentiation, make a right. This tuning, not
surprisingly, is a special case of what Sundermeyer found necessary to get first-class
transformations to combine suitably to get the familiar gauge transformation for the
potentials for Yang-Mills [35, p. 168]. Sundermeyer, however, did not calculate the
field strength(s) and notice the disastrous spoilage of the Gauss’s law-type constraints
by first-class transformations. Hence recovering the familiar gauge transformation of
the potentials for him was merely a good idea.

One could make similar remarks about Wipf’s treatment of Yang-Mills fields [34,
p. 38], except that Wipf doesn’t even seem to find recovering the Lagrangian gauge
transformations a good idea; it’s simply an option. If one doesn’t have that taste,
one at any rate has “the canonical symmetries” from an arbitrary sum of the first-
class constraints [34, p. 37]; Wipf advocates extending the Hamiltonian [34, p. 28].
But what one actually one gets from an arbitrary sum of first-class constraints is the
spoilage of Gauss’s law. Combining the constraints to form the gauge generator is
not an option (as in Wipf), nor even a good idea (as for Sundermeyer); it is com-
pulsory. To my knowledge even the proponents of the gauge generator G and the
total Hamiltonian have never shown that the extended Hamiltonian and its associated
first-class-constraint-generates-a-gauge-transformation claim are disastrous.

Now with the primary and secondary constraints working together, Gauss’s law is
preserved: V - E = V26 +V2¢ = V2(—¢é+¢) = 0. A first-class constraint typically does
not generate a gauge transformation; it is part of the gauge generator GG, which here
acts as {A,, G} = —0dy¢€, {p",G} = 0. Hence electromagnetism is just what Jackson
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says it is [17]; if a first-class constraint alone generated a gauge transformation, the
Hamiltonian formulation would not be equivalent to the Lagrangian formulation.

Advocates of the gauge generator G combining the constraints [1,20,22] generally
have aimed to recover the usual transformation of the potential(s) A,; the transforma-
tion of the field strength(s) F},, would follow obviously in the usual way and so did not
need explicit calculation. Part of the contribution made here is to calculate the effects
of a first-class constraint on the field strength F),,, because calculating the effect on the
gauge-invariant observable field strength leaves nowhere for error to hide. By taking
the curl before tuning the sum of first-class constraints rather than after, one sees more
vividly why that tuned sum is required and the separate pieces are unacceptable; one
sees the looming disaster to be avoided, rather than avoiding it without seeing it. Be-
holding the resulting disaster makes the package involving the gauge generator G, the
total Hamiltonian, and Lagrangian-equivalence compulsory in a way it previously has
not seemed. The commutative diagram illustrates what differs and what is the same
in commuting the operations of inferring F),, from A, and in inferring from effects of
the tuned combination G from the effects of the separate first-class constraints:

L—equiv.

A, G = [dPx(—p% +ep',i) — 0A, = —0y¢€
fd‘%I(;DOﬁ-l-Epi,i)J/ | curl
5AH = 526 - 5Z67i curt 5F,ul/ = (5867}1 —556,1'“) —H =V L;iq“%v' 5F/J,l/ =0

While the top line is fairly familiar, the bottom line appears to be novel, with the
merely partial exception of ([16]). It is of course unacceptable to have 6F), # 0, so
requiring Lagrangian equivalence from the Hamiltonian resolves the trouble.

6 Gauge Invariance of ¢ — %—g =—FE—p' =0

In the Lagrangian formalism, one defines the canonical momenta as p; =q4¢ %. In that
context, there is no difference in gauge transformation properties between p; =4 B
p; simply inherits its gauge transformation behavior through this definition.

In the Hamiltonian formalism, one thing changes and another one doesn’t. What
changes is the gauge transformation behavior of p;. In the Hamiltonian formalism p; is

independent, so it no longer inherits gauge transformation behavior from a(?;iLo' Instead
p; gets its gauge transformation behavior somehow or other (together or separately)

from Poisson brackets with first-class constraints. What does not change is the gauge
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transformation behavior of ¢° (which in many examples is heavily involved in the La-

grangian gauge transformation behavior of a‘ZiLO ).
One hopes, of course, to recover from the new Hamilton’s equation ¢* — gfi =
0 what one had in the Lagrangian formalism in p; =4 8(?11'L0 and then gave up in

setting the conjugate momenta free. On the other hand, if one is careless about gauge
transformation properties of p; or (more commonly) ¢’ in the Hamiltonian formalism,
it is possible to spoil ¢* — % = 0. The equation ¢* — % = 0 holds only on-shell; it
is not an identity in the Hamiltonian formalism. Thus one thing that one must not
do (though one sometimes sees it done) is to pretend that one can use this equation
to define the gauge transformation properties of ¢*. One cannot do that, because
gauge transformations are generated using Poisson brackets, i.e., off-shell, at the same
OH

logical ‘moment’ as the equations ¢* = TR which are also generated using Poisson

brackets. Thus there is no relationship between ¢* and % at that stage. For the

case of electromagnetism, there is no relationship between the electric field E (which

is not quite A;, but is close enough) and the canonical momentum p° (which is not
0H
Spi s :
transformation behavior of the velocity ¢*, namely, the time derivative of the gauge

quite but, again, is close enough). On the other hand, one still knows the gauge
transformation of ¢*: §¢° = (6q)’,0. For electromagnetism, this means roughly that
one can simply calculate how the new F),, following from the new A, by the usual
definition (taking the curl), differs from the old F,, derived from the old A,. The
on-shell equality of ¢* and % thus imposes a condition of on-shell equality of the gauge
OH
opi )
can be gauge transformations. In the case at hand, E is roughly A; (corrected by some

transformations of ¢* and This condition restricts what sorts of transformations

unproblematic spatial derivatives of A,) and p* is roughly % (again, corrected by
some unproblematic spatial derivatives of A,). Thus the condition is that the gauge-
transformation properties of E and p’ agree on-shell. While p? has vanishing Poisson
bracket with each first-class constraint separately in this case, E has vanishing Poisson
bracket only with the gauge generator G that combines the two first-class constraints
so as to cancel out the change that each one makes separately. Gauge invariance of
it = % thus necessitates regarding GG as the gauge generator, and not regarding each
isolated first-class constraint as generating a gauge transformation. That way, and only
that way, one keeps ¢' — % = 0 gauge invariant. Otherwise it isn’t clear what the
rules of the Hamiltonian formalism are.

For the specific case of electromagnetism, one has the (canonical) Hamiltonian [35,
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p. 127]
/d3 —|— F2 Aopi,i]. (12)

Thus ¢ — %—I; = 0 is just, for three of the four components of A,,,

0H

Ay — —
opt

= A — (' +A)=A;+ A% —p' = —E; —p' = 0. (13)

What one reckons as gauge freedom must be compatible with this on-shell relationship.
While p’ has vanishing Poisson brackets with each first-class constraint separately, F;
is invariant under a transformation of A, only if one tunes the primary and secondary
constraints’ smearing functions to cancel out the induced changes in F;. Thus being a
gauge transformation requires more than leaving p’ alone (as one might think sufficient
if one gives the Hamiltonian formalism priority [16] [7 p. 20]) it requires leaving E;

alone as well. Otherwise one makes the relationship —E; — p' = 0 gauge-

5117
dependent, spoiling Hamiltonian-Lagrangian equwalence and undermining the physical
meaning of p’ on-shell (the only context where p’ has any physical meaning). These
concerns about the extended Hamiltonian bear some resemblance to Sugano, Kagraoka

and Kimura’s [38].

7 Counting Degrees of Freedom

One might think that correct counting of degrees of freedom would depend on whether
one takes the generator of gauge transformations to be a special combination of the
first-class constraints or an arbitrary combination. In the former case, there are only as
many independent functions of time (and perhaps space) as there are primary first-class
constraints; some of the constraints are smeared with the time derivative of functions
that smear other constraints. In the latter case there are as many independent functions
of time (and perhaps space) as there are first-class constraints. However, behavior
over time is irrelevant; hence a function and its time derivative, being independent
at a moment, count separately. Thus the counting works out the same either way [7,
pp. 89, 90]. Getting the correct number of degrees of freedom thus does not show
whether each first-class constraint or only the special combination G generates gauge
transformations.

20



8 Error in Identifying Primaries As Generating
Gauge Transformations

One major reason that first-class constraints wrongly have been thought to generate
gauge transformations is that Dirac claims to prove it early in his book [5, p. 21]. One
finds the same proof repeated in other works [7, 10, 34]. The canonical Hamiltonian is,
up to a boundary term [35, p. 127],

/d3 —|— F2 Aopi,i]. (14)

The total Hamiltonian adds the primary constraint with an arbitrary velocity. Dirac,
not using the gauge generator G, saw the arbitrary velocities v multiplying the pri-
maries outside his H' but apparently forgot the corresponding arbitrary ¢’s (like Ag)
multiplying the secondaries inside H'. Thus he did not notice that the first-class pri-
maries outside H' and first-class secondaries inside H’ work as a team to generate
gauge transformations. Thus

[w]e come to the conclusion that the ¢,’s, which appeared in the theory in
the first place as the primary first-class constraints, have this meaning: as
generating functions of infinitesimal contact transformations, they lead to
changes in the q’s and the p’s that do not affect the physical state. [5, p. 21,
emphasis in the original]

One could hardly reach such a conclusion without thinking that the primaries were the
locus of all dependence on the arbitrary functions. He then conjectures that the same
holds for first-class secondary constraints. As appeared above, neither the primaries
nor the secondaries generate a gauge transformation in electromagnetism. Dirac’s fail-
ure presumably encouraged him to extend the Hamiltonian in order to recover what
was apparently missing [5, pp. 25, 31]. But it is unnecessary and obscures the relation
of the fields to those in the more perspicuous and reliable Lagrangian formalism [41,
p. 39]. Indeed the extended Hamiltonian breaks Hamiltonian-Lagrangian equivalence
[42]. Requiring Hamiltonian-Lagrangian equivalence fixes the supposed ambiguity per-
mitting the extended Hamiltonian [43].

8.1 Perpetuation in Recent Works

This same mistake continues to be made, as in ([7,10,34]). The problem will be
clearer if one starts with Wipf’s treatment. The time evolution of a system with
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first-class constraints is derived from the total/primary Hamiltonian H), (the canonical
Hamiltonian H plus the primary constraints ¢, with arbitrary multiplier functions u®).
For a phase space quantity F, one compares

two infinitesimal time evolutions of F' = F(0) given by H, with different
values of the multipliers,

Fit) = t{F HY + t{F,6u)pd i=12 (5.18)
The difference §F = F5(t) — F1(t) between the values is then

ouF ={F,pupa}, ,  p=t(p®—p). (5.19)

Such a transformation does not alter the physical state at time ¢, and hence
is called gauge transformation [reference to Dirac’s book [5]] [34, p. 27]

Like Dirac, Wipf has overlooked the fact that the canonical Hamiltonian also is influ-
enced by the multiplier functions: the canonical Hamiltonian contains Ag multiplying
the secondary constraint, while the multiplier function is Ag. Thus not only the u®
multiplier functions, but also the canonical Hamiltonian H, needs a subscript 1 or 2.
With this mistake corrected, one has

OuF =t{F,Hy — Hi} + t{F, po } (15 — p{) =
HF, / @y — (A2~ AN () ()} + H{F, / Py )} (2 — o). (15)

The correct expression exhibits the secondary constraint(s) working together with the
primary constraint(s). Given the Dirac-Wipf erroneous expression involving only the
primary constraint, a ‘gauge transformation’ that changes only Ag would be exhib-
ited. But as was shown in detail above, or as follows from a moment of reflection on
electrostatics, changing Ay while leaving everything else alone does alter the physi-
cal state, and hence is not a gauge transformation. It is obvious that this expression
does not change the canonical momenta p° or p’; what does it do to A,? The cor-
rected expression, unlike Dirac’s, changes A; as well, as it should. Letting F' = A, (x)
gives (changing notation from ¢ to dt for a small interval, and recalling that our initial
moment can be called ¢t = 0)

5, A, (5t 1) =

6t{A,(0, z) /d3 (A2 — A0, y)7 ,Z}—i—ét{Ay,/d yp° g — 1) =
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5t / Byt 8(z, y) (A2 —Ab.) (y) + 516 (g — pur) () =

5188 (A2, — Al ) () + 6t60(A2 — AL)(0,z) =
5t(AZ — A, (0,2).  (16)

This expression clearly resembles the usual gauge transformation property of electro-
magnetism —d,€, so one can say that the two evolutions differ by a (standard) gauge
transformation, as one would hope. Thus it is false that the primary first-class con-
straints generate a gauge transformation in examples like electromagnetism, because
it is a special combination of the primaries and secondaries that does so. The primary
by itself changes E , as does the secondary by itself. Continuing with Wipf,

[w]e conclude that the most general physically possible motion should al-
low for an arbitrary gauge transformation to be performed during the time
evolution. But H,, contains only the primary FCC. We thus have to add to
H,, the secondary FCC multiplied by arbitrary functions. This led Dirac to
introduce the extended Hamiltonian. .. which contains all FCC [reference to
Dirac’s book [5]]. [34, p. 28]

But the secondary first-class constraint already is present in the total Hamiltonian, as
is the gauge freedom, so there is nothing missing that needs adding in by hand. Such
an omission is all the more consequential in relation to General Relativity, in which
the canonical Hamiltonian is nothing but secondary constraints (and boundary terms).

Now the problem in the treatment of Henneaux and Teitelboim can be identified
readily and treated briefly.

Now, the coefficients v* are arbitrary functions of time, which means that
the value of the canonical variables at t5 will depend on the choice of the v
in the interval t; < t < t9. Consider, in particular, ¢t; 4+ §¢. The difference
between the values of a dynamical variable F' at time 9, corresponding to
two different choices v®, v of the arbitrary functions at time t;, takes the

form
OF = Sv*[F, ¢g] (1.35)

with dv® = (v* — ©%)dt. Therefore the transformation (1.35) does not alter
the physical state at time t5. We then say, extending a terminology used in
the theory of gauge fields, that the first-class primary constraints generate
gauge transformations. [7, p. 17]
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By now it has been seen that this statement is false. But its proximate cause is evi-
dent after looking at Wipf’s treatment, namely, neglecting the fact that the secondary
constraint was already present in the canonical Hamiltonian with a gauge-dependent
coefficient in the form [ d®y — Ay(y)p',i (v). They give just Dirac’s argument again.
But it simply isn’t the case that the difference between the values of the two evolutions
is given by 0F = Jv?[F, ¢,], because the two evolutions are also influenced by their
differing terms of the form [ d3y— Ag(y)p',i (y) or the like from the canonical Hamilto-
nian, at least for theories with secondary first-class constraints like electromagnetism,
Yang-Mills, and GR.

Unfortunately Dirac’s mistake also reappears in the recent book by Rothe and
Rothe [10, p. 68]. Failure to look inside the black box H, the canonical Hamiltonian,
and see the secondary first-class constraints while doing this little calculation seems
to be the cause. Choosing A; as a phase space quantity to test the behavior of the
quantity built from primary first-class constraints gives an easy diagnostic to see that
no gauge transformation is generated.

9 Dirac Conjecture’s Presupposition

Dirac, having supposedly shown that primary first-class constraints generate gauge
transformations, conjectured that secondary first-class constraints do the same [5].
Eventually it was found that this conjecture has counterexamples, namely ineffective
constraints, though they are a bit exotic and might sensibly be banned [7]. But the
Dirac conjecture has a much more serious problem, namely, the falsehood of its presup-
position that primary first-class constraints generate gauge transformations. Whether
that problem makes the Dirac conjecture false or lacking in truth value will depend on
the logical details of the formulation, but it certainly winds up not being an interesting
truth. Complementing the falsification by direct calculation above is a diagnosis (just
above) of the mistake that Dirac and others have made in failing to pay attention to
the term [ d3z — Agp’,; term in the Hamiltonian.

How does one reconcile this result that a primary first-class constraint does not
generate a gauge transformation with the multiple ‘proofs’ of the Dirac conjecture in
the literature [7,44-46] and the statements that it can be made true by interpretive
choice [6,7]7 These proofs usually presuppose that a Dirac-style argument has al-
ready successfully addressed primary first-class constraints, so the only remaining task
involves secondary or higher order constraints. The remaining task tends to involve
statements about first-class constraints, which are simply assumed to generate gauge
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transformations individually. Thus ‘proofs’ of the Dirac conjecture are frequently just
statements about Poisson brackets and first-class secondary (and higher) constraints—
straightforward technical questions with results that are, presumably, correct. Con-
ceptually involved proofs of the Dirac conjecture, which essentially talk about gauge
transformations, must fail. But mere technical statements about vanishing Poisson
brackets are not threatened at all. Hence there is no tension with the correctness of
the calculations.

10 Observability of P’ vs. E; Can Be Crucial

While it is acknowledged that the extended Hamiltonian not equivalent to L strictly,
this inequivalence is often held to be harmless because they are equivalent for “ob-
servables.” This claim presumably is intended to mean that the extended Hamiltonian
is empirically equivalent to L, differing only about unobservable matters. Such a re-
sponse will be satisfactory only if “observable” here is used in the ordinary sense of
running experiments. Technical stipulations about the word “observable,” especially
distinctively Hamiltonian stipulations, are irrelevant. Unfortunately it is not the case
that the extended Hamiltonian is empirically equivalent to the Lagrangian, a fact that
has been masked by equivocating on the word “observable” between the ordinary ex-
perimental sense and a technical Hamiltonian sense. It is peculiar to think of observing
canonical momenta conjugate to standard Lagrangian coordinates—in fact it seems to
be impossible to observe that kind of canonical momentum as such. What would be the
operational procedure for observing p'? Rather, its experimental significance is purely
on-shell, parasitic upon the observability of suitable functions of ¢* and/or derivatives
of g'—derivatives (spatial and temporal) of A, in the electromagnetic case. One neither
acquires new experimental powers (such as the ability to sense canonical momenta) nor
loses old ones (such as the ability to detect a certain combination of derivatives of A,,)
by changing formalisms from the Lagrangian to the Hamiltonian. There are two ways
to see that p’ is not the primordial observable electric field. The first way involves the
fact that p’ does not even appear as an independent field in the Lagrangian formalism,
which formalism is correct and transparent. While it is perfectly acceptable for some
quantity to be introduced that is on-shell equivalent to the Lagrangian electric field,
there is no way for that new quantity to become the electric field primordially, rather
than merely derivatively and on-shell. A, or a function of its derivatives still has that
job. Apart from constraints, canonical momenta are auxiliary fields in the Hamiltonian
action [ dt(pg— H (g, p)): one can vary with respect to p, get an equation ¢— %—I; =0to
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solve for p, and then eliminate p to get [ dtL. One would scarcely call an auxiliary field
a primordial observable and the remaining ¢ in L derived! The second way involves the
fact that the electric field is what pushes on charge; but it is easy to see that in both the
Lagrangian and Hamiltonian contexts, what couples to the current density is not p?,
but A,. For a complex scalar field 1, the Lagrangian interaction term takes the form
~ (YO )* — P*Oatp) A% + p1p* A%, The absence of terms connecting v with derivatives
of A, implies that charge couples to A, and/or its derivatives, not to the canonical
momenta conguate to A,, even in the Hamiltonian context. What is the operational
procedure for measuring p*? The only plausible answer is to use on-shell equivalence to
the empirically available Fp;, which involves derivatives of A,. Otherwise, what reason
is there to believe that any procedure for measuring p’ involves a measurement of the
quantity that pushes on charge? Thus one should be disturbed, pace Costa et al. [16],
by the failure of A; = %HT:E to return the usual Lagrangian relation between p’ and the
derivatives of A, from the extended Hamiltonian. The coupling of charge-current to
A, ensures that A, or something built from its derivatives is the primordial observable
electric field. Thus the usual argument [7, 10, 16] to show that the inequivalence of the
extended Hamiltonian to the Lagrangian is harmless because irrelevant to observable
quantities, fails; unless “observables” are taken in the ordinary empirical sense, rather
than a technical Hamiltonian sense, empirical equivalence is not shown.

The ‘proof’ of the Dirac conjecture by Costa et al. [16] deserves special comment.
This paper goes beyond other treatments of the supposed equivalence of the extended
Hamiltonian to the total Hamiltonian for observables [7,10] in explicitly addressing
the example of electromagnetism in sufficient detail. The equivalence conclusion is
reached by explicitly taking the canonical momentum p’ to be the primordial physi-
cally meaningful quantity playing the role of the electric field. For a function of canon-
ical coordinates and momenta (no time derivatives), having vanishing Poisson bracket
with the gauge generator requires having vanishing Poisson bracket with each first-
class constraint, because different orders of time derivative of the smearing function
cannot cancel each other out [16]. But that latter condition opens the door to taking
all first-class constraints to generate gauge transformations and using the extended
Hamiltonian, they claim. They recognize that one can use Hamiltonian’s equations
from the total Hamiltonian and find a quantity that is equal in value on-shell to a
gauge-invariant function of ¢ and p. I observe that the electric field is in this category.
They also observe that such a quantity is invariant under the gauge generator of the
total Hamiltonian (the specially tuned combination of first-class constraints) and is not
invariant under the first-class constraints separately, as I emphasized above. In their
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words,

[o]ne can verify the invariance under [the usual electromagnetic gauge trans-
formation of A,] of the equations of motion ...

A =7; + 0 AY (3.8b)

...deriving from the total Hamiltonian.. ..

We next recognize F ij, mj ... [matter terms suppressed] as the canonical
forms of the basic gauge-invariant quantities of electrodynamics. One can
easily check that all these functions are indeed first class. Thus, F%,
mj...are also invariant under the extended infinitesimal transformations
[generated by an arbitrary sum of independently smeared first-class con-
straints]. ...[That extended first-class transformation] leaves invariant the

equations of motion. ..
PA =mj+ 0 AY — 9I¢?, (3.12b)

...arising from the extended Hamiltonian
Hp—H+ / Ba{e (x)mo(x) + () [0 (x) — .. ]}. (3.13)

[spinor contribution in secondary constraint suppressed|
Here ¢! and &2 are arbitrary Lagrange multipliers.

As a matter of fact, the sets of equations of motion (3.8) and (3.12) are
different. However, irrespective of whether one starts from (3.8) or (3.12)
one arrives at the Maxwell equations

OOF“ = aiﬂ'j - ajﬂ'i, (3.14)
m; =0'F7 .., (3.15)
[16, pp. 407, 408]

I note the absence of Gauss’s law!
They continue:

Therefore, Hr and Hg generate the same time evolution for the gauge-
invariant quantities, as required by [the equation of motion for gauge invari-
ant phase space functions].
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We now discuss the alternative formalism-dependent realizations of the elec-
tric field (—m;). From (3.8b) one obtains

mj = F%. (3.17)

Hence, F% is a faithful realization of 7; within the formalism of the total
Hamiltonian. We can check that F% is invariant under [the gauge generator
related to the total Hamiltonian, which combines the first-class constraints
with related smearings| but not under [the sum of separately smeared first-
class constraints, which is related to the extended Hamiltonian formalism)].
[16, p. 408]

This is the crucial point announced in my paper’s title—but Costa et al. fail to rec-
ognize the absurdity of the results of the extended Hamiltonian formalism. They

continue:

On the other hand, the formalism of the extended Hamiltonian provides the
equally faithful realization for 7; [see Eq. (3.12b)]

mj=F% 4+ 07¢?, (3.18)

which is invariant under [the sum of independently smeared first-class con-
straints|. One should not be puzzled by the fact that (3.18) does not coincide
with (3.17) or, what amounts to the same thing, with the Lagrangian defi-
nition of m; .... [16, p. 408]

But one should be puzzled. If 7; is equated to the electric field (as they say), and
if F% is just an abbreviation for a familiar expression involving derivatives of A, (as
follows from (3.12b) and (3.18)—and hence is still the electric field!), then we have the
contradiction (electric field = electric field + arbitrary gradient). With this contra-
diction in hand, one can derive various other plausible errors. This arbitrary gradient
is what spoiled Gauss’s law above. In any case F% has a much better claim to be
the electric field than does m;, which is just an auxiliary field in the Hamiltonian ac-
tion. Thinking that functions of phase space were the only quantities that needed
to stay gauge invariant—that is, not considering the actual electric field—is what
opened the door to the extended Hamiltonian and taking each first-class constraint as
separately generating a gauge transformation. One should infer that an isolated first-
class constraint does not generate a gauge transformation in electromagnetism. F%
is the primordial observable electric field; the canonical momentum as an independent
field is formalism-dependent, not even appearing in the Lagrangian formalism. In a
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Lagrangian for charged matter with an electromagnetic field, charge-current couples
primordially to A,,, from which E is derived, and not to the canonical momentum. Ve-
locities (such as appear in the electric field) are not physically recondite—automobiles
have gauges that measure them—but canonical momenta are: they acquire physical
significance solely on-shell, as Costa et al. remind us. Hence failure to recognize the
fundamentality of the Lagrangian formalism leads them to claim to have vindicated
the Dirac conjecture, when they had all the ingredients and calculations necessary to
refute it instead.

One might also worry that physically meaningful quantities are expected to have
vanishing Poisson bracket with the gauge generator [16], given that tensors in GR will
not qualify due to the Lie derivative term. (This problem is peculiar to external sym-
metries.) While this requirement is not unusual, it introduces the difficulties afflicting
the notion of observables in GR into the presumably more perspicuous discussion of
equivalence of equations of motion.

Crucial to gauge-transforming the electric field (as opposed to the canonical mo-
mentum to which it is equal on-shell) is having a gauge transformation formula for
velocities. In a Hamiltonian formalism it is tempting, though inadvisable, to avoid
velocities in favor of functions of ¢ and p. But the Lagrangian formalism essentially
involves the commutativity of gauge variation and time differentiation [47,48]. Impos-
ing that condition in the Hamiltonian formalism using the total Hamiltonian (the one
equivalent to the Lagrangian) yields the gauge generator G [47,48]. Thus the Hamilto-
nian formalism naturally can give the correct gauge transformation for velocities and
quantities built from them, such as the electric field. One does not need to avoid look-
ing for gauge-invariant quantities involving the velocities and default to functions of
only ¢ and p in a Hamiltonian context, as Costa et al. did [16]. Alternately, one can
be satisfied in a (total) Hamiltonian formalism with functions of ¢ and p [49] but, in
view of the need to preserve Hamiltonian-Lagrangian equivalence, avoid seeking the
largest collection of transformations (the first-class transformations rather than just
the gauge generator G) that preserve the phase space quantities at the expense of
Hamiltonian-Lagrangian equivalence.
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11 Anderson and Bergmann (1951): Canonical
Transformations and Lagrangian-Equivalence

None of this confusion associated with Hamiltonian transformations that aren’t in-
duced by Lagrangian gauge transformations should be much of a surprise, ideally,
in that Anderson and Bergmann explicitly discussed how the preservation of the La-
grangian constraint surface, which they called ¥;, corresponds to canonical transforma-
tions generated by the gauge generator G [1]. Hence one would expect transformations
that aren’t generated by G—e.g., those generated by an isolated primary constraint
in a theory (such as Maxwell’s electromagnetism or GR) where the gauge generator G
doesn’t contain that primary constraint in isolation (i.e., smeared by its very own ar-
bitrary function)—mnot to preserve the Lagrangian constraint surface. Hence the point
that a first class constraint by itself (in theories where such does not appear in isolation
in G) generates not a gauge transformation, but a violation of the usual Lagrangian
constraint surface, is already implicit in Anderson and Bergmann—at least if one is
working with canonical transformations. (Outside the realm of canonical transforma-
tions, one can still take Poisson brackets directly. But then there are far fewer rules
and hence there is much less reason to expect anything good to happen.) As they
observe,

Naturally, other forms of the hamiltonian [sic] density can be obtained by
canonical transformations; but the arguments appearing in such new ex-
pressions will no longer have the significance of the original field variables

ya and the momentum densities defined by Eq. (4.2) [which defines the
A= 0L

— Oya
tions of the form (2.4) [“invariant” transformations changing £ by at most

canonical momenta as 7 |. It follows in particular that transforma-
a divergence, such as electromagnetic gauge transformations or passive co-
ordinate transformations in GR| will change the expression (4.9) [for the
Hamiltonian density] at most by adding to it further linear combinations of
the primary constrains, i.e., by leading to new arbitrary functions w’. [1, p.
1021]

So they invented the gauge generator G to make sure that the ¢’s and p’s keep their
usual meanings.

Unfortunately the point was lost after Bergmann, Anderson and Dirac repeatedly
said things that were incompatible with that correct claim about the gauge generator
G, namely, that a first-class constraint generates a gauge transformation. Accounting
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for the change in Bergmann’s and Anderson’s view is beyond the scope of this paper.
It seems to be, at least in part, connected with the tendency to drop the primary
constraints and their associated canonical coordinates from the phase space, especially
once the primary constraints for GR were expressed in the trivial form of the vanishing
of some momenta. The view that a first-class constraint generates a gauge transforma-
tion then became the conventional wisdom expressed in countless works for decades,
with lingering consequences (such as regarding observables [50,51]) even where the
gauge generator has been gaining ground.

11.1 Canonical Transformations Generating Position-
Dependent Field Redefinitions

If one wishes, one can treat a smeared primary constraint as a canonical transformation
generator in the sense of ([1,52]) and preserve some sense of physical equivalence for
the transformation generated by the primary first-class constraints. That is a feature of
dynamics in general, not Dirac-Bergmann constrained dynamics in particular. It makes
use of p°, but not the fact that p” = 0 (its being a constraint) or its having vanishing
Poisson brackets with the other constraints and Hamiltonian (its being first-class). But
equivalence is preserved only by losing some of the original fields’ meanings.

Let C = [ d®ye(t, y)p°(y). One can add to the Hamiltonian action the time integral
of the total time derivative of this quantity. One gets new canonical coordinates,
Q4 = ¢4 + chCA’ and new canonical momenta, P4 = pa — (gq—a, and a slightly altered
Hamiltonian, K = H + %—? =H+ [ d3yp0%, which adds a term proportional to
a primary constraint only. Of the new @’s, only the 0th differs from the old ¢’s
(Q° = ¢° + ¢); the new momenta are the same as the old. The trouble arises subtly:
for the other @Q’s velocity-momentum relation, Q¢ = gTKav the dependence on the Oth
canonical coordinate in K involves the altered Q. The electromagnetic scalar potential
is involved in the relation between A; and p’, so changing the scalar potential alters
the relationship between the canonical momenta and the velocities, the sort of issue to
which Anderson and Bergmann called attention. For ¢" corresponding to Ag (or the
lapse N or shift vector 3’ in General Relativity), one can change ¢° alone however one
likes over time and place (which is what the corresponding primary constraint does)—
but only at the cost of ceasing to interpret the new canonical coordinate Q° = ¢° 4 6¢°
as (minus?) the scalar potential Ag (or lapse N or shift 3°)! The new Hamiltonian K

41 use — + ++ metric signature. But indices are placed up and down freely, depending on whether the
general paradigm Q# or the specific case A, is more relevant.
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differs from H only by a term involving a primary constraint py = Fy, which doesn’t
matter. The new velocity-momentum relationship is

0K 0 1 1
P2+—szk+Pj8j[Q0—e])=Pi+5i(Q0—€)- (17)

@ :5_3263(5 iy

One can solve for P; and then take the 3-divergence:
Pii=0/(Q" — Q%i+ei) = 0:(¢' — 0iq") = 0;Foi = —0i B (18)

By using the full apparatus of a canonical transformation and keeping track of the fact
that QV is no longer (up to a sign) the electromagnetic scalar potential as ¢° is, one can
resolve the contradiction about vanishing vs. nonvanishing divergence of the canoni-
cal momentum wvis-a-vis the electric field. Such reinterpretation, which strips the new
canonical coordinates of some of their usual physical meaning and replaces them with a
pointlessly indirect substitute, though mathematically permitted, is certainly not what
people usually intend when they say that a first-class constraint generates a gauge trans-
formation. What they mean, at least tacitly, is that the fields after the transformation
by direct application of Poisson brackets (not a canonical transformation) have their
usual meaning—hence one would (try to) calculate the electric field from Q- Q"
(thus spoiling the Lagrangian constraints, as shown above) rather than Q' — Q% +e.; .
Supposing that one attempts to retain the old connection between the Oth canonical
coordinate and the electromagnetic scalar potential, one can calculate the alteration
in the electric field (that is, the electric field from Q@ less the electric field from ¢4)
as 0Fy, = 0gdA,, — 0,049 = 0 — an(% = —0pe, as found above by more mundane
means. To avoid the contradiction of a physics-preserving transformation that changes
the physics, one can and must re-work the connection between Q¥ and Ag, as shown.
But simply avoiding this sort of generating function, one that is not (a special case of)
G, is more advisable.

In short, as a canonical transformation generator with suitable smearing, pg, the
primary first-class constraint, generates only an obfuscating position-dependent change
of variables. It has nothing to do with the usual gauge freedoms of electromagnetism
(or GR, by analogy). It has nothing to do with py’s being first-class; the canoni-
cal transformation would work equally well for Proca’s massive electromagnetism, in
which that constraint is second-class. Only in detail does it even depend on py’s being
a constraint, as opposed to merely something that lives on phase space. It is easy
to see reasons not to make such transformations, and wrong to make them without
understanding what they do.
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One can also try the secondary constraint p’,; as a generator of a canonical
transformation: D = [d%y — €, p'(y) after dropping a boundary term. The new

canonical coordinates are Q4 = ¢* + % = q¢* — ¢, 5@ = Ay — €,;0.. The new
canonical momenta are P4 = pa — gq—DA = p4. One sees that the new Q° are not

the original electromagnetic 3-vector potential A; anymore. (They are not a gauge-
transformed vector potential, either, unless one throws the trouble onto Q° by strip-
ping it of its relation to the electromagnetic scalar potential.) The new Hamiltonian is
K=H+ %—? =H+ [ d3y — p'e,o; , which differs from the old by a term proportional
to the secondary constraints (and perhaps a boundary term). Thus the altered Q-P
relation is Q' = g—g =P+ Q,; —€,0;. One can take the divergence and solve for P?,;:
Pi,i = ai(Qi,(] —QO,Z' —I—E,(]i) = ai(qi,(] —aiqo) = aiF(]i = —OZEZ By taking into account
the fact that the new @’s are no longer all just the electromagnetic 4-vector poten-
tial A,,, one resolves the contradiction between vanishing and nonvanishing divergence.
The electric field E , which is an observable by any reasonable standard, is no longer
specified simply by (derivatives) of the new canonical coordinates @), but requires the
arbitrary smearing function € used in making the change of field variables also. That
is permissible but hardly illuminating.

One can do basically the same thing with Proca’s massive electromagnetism [17, 35,
44], taking the secondary constraint, now second-class, as the generator of a canonical
transformation. The secondary sprouts a new piece m?Ay. The transformed massive
Hamiltonian K gets an extra new term m2?@"¢. The new canonical momenta reflect
a change in the primary constraint form: Py = py — m?. But everything cancels out
eventually, leaving equations equivalent to the usual ones for massive electromagnetism,
naturally. Only in detail does the first-class (massless) vs. second-class (massive) char-
acter of the secondary constraint make any difference. As the generator of a canoni-
cal transformation, a first-class constraint doesn’t generate a gauge transformation in
massless electromagnetism any more than a second-class constraint generates a gauge
transformation in massive electromagnetism. Both generate permissible but pointless
field redefinitions.

The key difference is that a special combination of first-class constraints in massless
electromagnetism does generate a gauge transformation, whereas in massive electro-
magnetism, there is no gauge transformation to generate, so no combination of any-
thing can generate one. Amusingly, given that the key issue is changing A, by a
four-dimensional gradient, and not directly the first-class or even constraint character
of the generator, one can use the same special sum [ d®y[—p°(y)é(t, y) + 0’y (y)e(t, v)]
as applied to massive electromagnetism to generate a Stueckelberg-like gauged version
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of massive electromagnetism, with the smearing function e, in this case not varied in
the action, as the gauge compensation field. [ d3y[—p®(y)é(t,y) + p'.i (y)e(t, y)] is no
longer a sum of constraints (not even second-class ones, though p° is a second-class
constraint). This possibility might take on some importance in application to installing
artificial gauge freedom in massive Yang-Mills theories, where the proper form has been
a matter of some controversy [53-58|.

Finally, one can use the gauge generator G as the generator of a canonical transfor-
mation in Maxwell’s electromagnetism. It turns out that, in contrast to an arbitrary
function on phase space (or a first-class constraint) as a generator, the gauge generator
G generates the very same thing for the canonical variables as a canonical transforma-
tion as it does ‘by hand’ by taking the Poisson bracket directly with ¢ and p. Dropping
a spatial divergence, one has G = f d3x — e, uP". One gets the new canonical coordi-
nates Q4 = ¢4 + (gTi = A, —€,o and new canonical momenta Py = py — (?q—(i = pa, and
a slightly altered Hamiltonian, K = H + %—? =H+ [ d3y — phe, 0, which adds related
terms proportional to the primary and secondary constraints (and a spatial boundary
term). Significantly, Q4 —q¢* = chi = {¢*,G}and Py—py = —(g]—(f; = {pa, G}. That is,
G does the very same thing to ¢* and p4 whether one simply takes the Poisson bracket
with G directly or uses GG to generate a canonical transformation. Thus if one uses G,
one can be nonchalant (as people often are using first-class constraints separately [5, p.
21]) about whether one is making a canonical transformation or is merely directly tak-
ing a Poisson bracket; that lack of concern does not carry over to expressions different
from G, however. G does one good thing, recovering the usual electromagnetic gauge
transformations, used either way. By contrast, each isolated first-class constraint offers
a choice of two bad things (one disastrous, one merely awkward): it can either destroy
the field equations if used directly in Poisson brackets, or generate a confusing change
of physical meaning of the variables as the generator of a canonical transformation.

One can summarize in a table some of the results about using the gauge generator
G wvs. a smeared individual constraint or other phase space function, and using it
as a canonical transformation generating function wvs. using it directly via Poisson
bracket. Presumably the experience for electromagnetism largely carries over for other
constrained theories. For the first-class theory one has these phenomena:

Canonical transformation Direct Poisson bracket

Gauge generator G Gauge transformation Gauge transformation

Smeared constraint | Locally varying field redefinition Spoils V- E =0

The entries in the first column can be described in more detail. One can illustrate
the illuminating (invariant) canonical transformations related to G (top left corner)
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and the obscuring but permissible more general canonical transformations (bottom
left corner) in the following diagrams.

The first is a commutative diagram with well understood entries and transforma-
tions. (The equation numbers correspond to the remarks in Anderson and Bergmann

[1].)

invariant gauge 2.4:

El
0L=div, §A,=0uE, dguv==Leguv
|
constrained Legendrel lconstrained Legendre
invariant canonical G
H H’

. A_ 0L
preserves qa sense, 4.2: w =Pi4

One can of course also make point transformations, changes among the g4’s only. In
electromagnetism, one might use A* instead of A,; that is probably the least bad choice
if one does not stick with A,. In GR one is free to use g,,,, g"* (which equals g"”\/—g),
or various other fields, for example. For Anderson and Bergmann, this freedom to
make point transformations is already implied by their rather abstract use of g4 (or
actually y4 in their notation) and rather general form of gauge transformations. A
field redefinition from one choice of g4 to another will of course induce a contragredient
change in the canonical momenta. One can also add a divergence to the Lagrangian
density. Such an alteration will also tend to alter the canonical momenta, but not
mysteriously. These two changes were combined to simplify the primary constraints
of GR in 1958 [23,24]. One could augment the diagram above to indicate more fully
the resources of Lagrangian field theory. The main point, however, is to distinguish
adequately what is allowed within the Lagrangian formalism from the greater, and
more dangerous, generality of the Hamiltonian formalism.

The second is an unhealthy aspiring commutative diagram illustrating how allowing
general canonical transformations—for example, a single primary or secondary first-
class constraint—Ileads to entries and transformations that are not widely understood,
if meaningful at all.

E [N E/
. | . .
constrained Legendrel | inverse constrained Legendre?
H general canonical o
i . A_ 0L
violates qa sense or 4.2: m =544
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A canonical transformation to action-angle variables, for example, would give a Hamil-
tonian that might not readily admit an inverse Legendre transformation back to a
Lagrangian. Suffice it to say that Hamiltonian-Lagrangian equivalence is obscured by
general canonical transformations. It is not very obvious what the resulting equations
mean physically, given that the usual Lagrangian variables such as g,,,,, not the canon-
ical momenta, are the ones with known direct empirical meaning. General canonical
transformations are useful tricks in mechanics, where one already understands what ev-
erything means, but needs to solve specific problems. But a position-dependent change
of variables when one is already on marshy ground, having difficulty identifying change
or observables, is inadvisable without the greatest care.

12 How to Get Right Electromagnetic Fields
with Wrong Gauge Transformations

One might think that misidentifying the generator of a gauge transformation would
lead to selecting the wrong fields in mildly nontrivial examples such as electromag-
netism. That a first-class constraint generates a gauge transformation was held by
Bergmann and collaborators [2-4], not just Dirac [5]. Bergmann commented that, for
electromagnetism, the physical variables are (omitting sources, unlike him) V x E and
V x B because they are neither 0 nor gauge-dependent [2]. Bergmann evidently got
the right fields for electromagnetism. How is that result compatible with his having
the wrong generator(s)?

Using his condition of vanishing Poisson bracket with each first-class constraint, one
should find that V - E is gauge-dependent but V x E is gauge-invariant; B is gauge-
invariant, but V- B =0.That V-E is gauge-dependent is incredible, but it is tempting
not to do the calculation because the expected answer is obvious. By contrast, using
G [1], one finds that E is gauge-invariant, as is B, but both have vanishing divergence.
One keeps the same fields, but for different reasons. Given the wrong notion, one would
exclude V - E because it is gauge-dependent. Given the right notion (using G), one
excludes V - E as vanishing. Thus one sees how, in this example, the wrong gauge
transformations are consistent with the correct gauge-invariant non-vanishing E and
B parts, the curls.
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13 Presupposition of Dirac Observables

The usual concept of “Dirac observables” as entities that Poisson-commute with all
first-class constraints is interesting largely on the assumption that a first-class con-
straint generates a gauge transformation. Now that it is clear that a first-class con-
straint generally does not generate a gauge transformation, the usual concept of Dirac
observable, so defined, is of rather lessened interest, if any. One might nonetheless cal-
culate how the electromagnetic field strength F),, fares when measured by the crooked
rod of Dirac observables as traditionally defined. One can take its Poisson bracket di-
rectly once one defines, with Anderson and Bergmann, the Poisson bracket of the time
derivative of a canonical coordinate to be the time derivative of the Poisson bracket of
the canonical coordinate [1]:

: 0{a",}
A )

This definition facilitates recapitulating a calculation made above (Eqn. 3) by more
pedestrian means. Smearing p°(y) with arbitrary £(¢, y) and taking the Poisson bracket

gives

Sy = {F(t.2), [ P01} = 10,4, — 0,4 [ P Wit =
0,0y — 8,6, (20)
Let u=0, v = n:
§Fon = —0F = 0y0 Ay, — 0p0Ag = 0pE8°0 — 0,609 = —0p€ # 0. (21)

As was also found above, while B is unchanged, Eis changed by 9,&. Hence the electric
field is not a Dirac observable by the usual reckoning, which is odd. That is contrary to
what Matschull found [28], likely because the temptation to default to the conventional
wisdom overwhelmed the motivation to do trivial calculations.

What does the secondary p’,; (z) do? That calculation also can be redone using the
Poisson bracket now:
5F,uz/ = {F/Jl/(t? :E)v /dsypiai (y)e(tv y)} = {a,uAl/ - al/A/.n /dsy - pl(y) aayel}

; Oe i i
=0y / d3yd(z, y)(—éyayi) — p > v =0,0,0;€ — 6,0,0;6.  (22)

Clearly B is unchanged, but E’s change is obtained by setting 4 =0, v = n:
§Fyn = —0F = 030,0;€ — 0 8y0ie = —0p0pe. (23)
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Again E is changed by an arbitrary gradient. This is again contrary to Matschull’s
claim [28].

By now the remedy is clear: the primary and secondary constraints should be suit-
ably combined in G. A plausible replacement for the usual concept of Dirac observable,
at least for electromagnetism and other theories with internal symmetries, is to look
for quantities that have vanishing Poisson bracket with the gauge generator G. That
should suffice for electromagnetism; the field strength F},, is thus observable. One has

9 9 o, O€
(B (t.2).G) = {5 Ato) = 5 Au(ta), [ =" )5 5) =

0 0
/dsy(—@ég&,e(t, y)+ @55606(75, y) = —0,0,€(t, x) + 0,0,€(t,x) =0.  (24)

Thus the electric and magnetic fields are observable by the appropriate criterion, which
uses the gauge generator G rather than any first-class constraint in isolation. For Yang-
Mills fields, matters should be more complicated, but still equivalent to the Lagrangian
result (where F., is gauge-dependent and hence not observable [35]).

14 Conclusion

Carefully doing Hamiltonian calculations for electromagnetism, as an end in itself,
would be using a sledgehammer to crack a peanut. But the pattern of ensuring that
the Hamiltonian formalism matches the Lagrangian one, which is perspicuous and
correct, will prove very illuminating for the analogous treatment of GR. There the
right answers are generally not evident by inspection, and the calculations are difficult

“1” and a properly crossed “t” look

and error-prone. Knowing what a properly dotted
like will be crucial in GR, where various attractive entrenched errors related to the
first-class-constraint-generates-a-gauge-transformation theme need to be diagnosed. In
particular, one should use the total Hamiltonian and its associated gauge generator G,
not the extended Hamiltonian and each first-class constraint smeared separately. While
various people have made such advocacy before, it would seem that the calculation of
the gauge dependence of the electric field and the spoilage of Gauss’s law achieve a
new level of rational compulsion for the Lagrangian-equivalent total Hamiltonian and
G.

One example of an entrenched error in canonical GR is the common claim that
‘H; generates a spatial coordinate transformation. While of course H; does have the

appropriate Poisson brackets with the spatial metric and its conjugate momentum to
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generate a spatial coordinate transformation as far as those fields are concerned [35],
the falsehood of the statement in classical GR is evident from the Poisson bracket with
the shift vector 37 and the lapse function N. The immediate results

{Hi(x), #(y)} =0,
{Hi(x), N(y)} =0 (25)

do not give even the Lie derivative of a scalar like the lapse IN, much less that of
a vector like 3*. One can treat H; as generating a coordinate transformation on a
single initial data surface (much as one can keep E from changing due to p’,; if one
uses only a time-independent smearing function). But failure to transform the lapse
and shift destroys the information that allows the aspiring initial data surface to be
embedded consistently into space-time; the aspiring initial data surface instead is just
a lonely moment. To recover the usual electromagnetic gauge transformations and GR
coordinate transformations, one instead needs the gauge generator to pick out gauge
transformations in the Hamiltonian context [20]; G transforms the scalar potential (or
lapse and shift) appropriately as well. Taking seriously the gauge generator G, not
first class constraints in isolation, as generating gauge transformations will remove the
still common expectation [10] that observables should have vanishing Poisson brackets
with first class constraints. There might be some clarification achieved for canonical

quantization.

15 Appendix: Application to GR

As in electromagnetism, taking a first-class constraint as (by itself) generating a gauge
transformation leads to trouble in GR. The momentum constraint in the Lagrangian
context is DiKZ-j — D;K = 0, the time-space part of Einstein’s equations, where the
extrinsic curvature tensor K;; tells how space bends relative to space-time. Kj; is
defined in terms of the spatial metric g;; and the lapse N and shift (3% and some time
and space derivatives thereof: K;; = ﬁ(gij—Di Bj—D;f;). Thelapse N relates physical
time to coordinate time, while the shift vector (* tells how spatial coordinates move
over time. The time-time part of Einstein’s equations (without sources) is K;; K% —
(K{)? — R = 0. The primary constraints py =g aano = 0 and p; =4 fTﬁﬂ, = 0, after
the transition to the Hamiltonian formalism, are first-class.

po varies N; p; varies §°. Do they generate gauge transformations? Varying N
arbitrarily, or 3¢, or both, typically spoils the constraints in Lagrangian form, just as
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in electromagnetism. For example, p; varies 3°, which in the momentum constraint
DiKZ-j — D;K = 0 introduces new terms

(- D' (DB, Dy6%) — 5D D130, + D' D,3) + (DN =) Do+ N~ D, Do,
which typically fail to vanish. (Again one notices a Laplacian-type piece.) Likewise
with varying N in the momentum constraint or NV or 4’ in the Hamiltonian constraint.
Thus the Gauss-Codazzi relations embedding space into space-time fail if one mistakes
first-class constraints p; or pg for generators of gauge transformations.

The constraints Hy and H; in terms of 7% don’t notice trouble—they don’t even
see pg or p; because they are independent of N and 3°. But that fact simply shows that
the constraints in Hamiltonian (¢ — p) form cease to be equivalent to the Lagrangian
constraints (¢ — ¢ form). The constraints in Lagrangian form, in terms of K;; rather
than 7%, are those with direct physical significance. This error would be obvious if
it were common to move from the verbal formula “a first-class constraint generates a
gauge transformation” to mathematics; but in fact only the move from mathematics
to the verbal formula is generally made. Practical people (like numerical relativists)
have no problem, because they’d likely not use first-class constraint transformations
instead of coordinate transformations. Thus conceptual confusion is generated without
immediate mathematical or empirical difficulty.

15.1 What Do H; and H; Generate?

One often reads that H; generates spatial coordinate transformations. Given the elec-
tromagnetic precedent above, one is prepared to disbelieve that claim. Given the
distinction between H and G [20], it is clear that H( can help either in H to generate
time evolution or in G to generate a change of time coordinate. Does H( generate some
combination of time evolution and change of time coordinate? Apparently not; Hy has
a well defined mathematical action with no obvious interesting physical meaning in
isolation. Omne can find the relation between Hy and space-time coordinate transfor-
mations by starting with the gauge generator G and throwing away some terms to
isolate Hg. The gauge generator G has a bunch of terms involving the primary con-
straints, the lapse and shift, and (in some cases) the spatial 3-metric [20]; these will not
affect the 3-metric g;;. Thus {g;;(2), G} = {gi(x), [ d*y[e"(y)Ho(y) + €' (y)Hi(y)]}. €
is the normal projection of the 4-vector £&* describing an infinitesimal coordinate trans-
formation, while €’ is the spatial projection. Thus one has et = N¢0 and €@ = €' 4 3¢9,
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Setting €’ = 0 to make a purely normal coordinate transformation, one has
(o). [ dyet (M)} = 8L eyl

While that looks like 1% of the desired space-time Lie derivative formula, the obvious
results {N(z), [ d3yet(y)Ho(y)} = 0 and {B(x), [ d3yet(y)Ho(y)} = 0 show that the
rest of the Lie derivative formula is violated. Thus Hy does not generate a coordinate
transformation.

Likewise H; can generate part of a spatial coordinate transformation or part of a
spatial translation. One can readily see from the Poisson brackets that H; does not
generate a coordinate transformation. While the Poisson brackets

{g(o). [ Py} = £egi(a),
(wa@), [ dye ()i} = Len'(@) (26)
are appropriate for a coordinate transformation, the brackets
(B, [ dve@mim) =o,
(V). [ e M) =0 (27)

are not appropriate for a coordinate transformation—not even a spatial coordinate
transformation. They aren’t appropriate for a spatial translation, either. Neither does
it seem to be possible to regard the transformation as a combination of a coordinate
transformation and a translation. By itself H; simply generates variations in the spatial
metric g;;, its conjugate momentum 7%, and functionals thereof, variations with a
spatial Lie derivative form. The world is thereby changed, but not in a way with any
special physical meaning. In fact there seems to be no sensible physical meaning for
the transformation in isolation; by itself it is simply a bad change, in that if one starts
with a physically allowed situation, a change is made to an impermissible one.

It long was easy to neglect 4-dimensional coordinate transformations because a
usable gauge generator was unavailable after the 3 + 1 innovation in 1958 [23,24]
rendered the original G [1] obsolete. The 3 + 1 G finally appeared in 1982 [20]. The
fact that GR lacks hidden symmetries [59] implies that each first-class constraint cannot
generate a gauge transformation. There being only 4 coordinate transformations and
no other symmetries, the 8 first-class constraints can contribute only in combination(s).
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If a first-class constraint generated a gauge transformation, then the gauge generator
G would be an arbitrary sum of first-class constraints, not a carefully combined sum
with twice as many constraints as arbitrary functions (as it in fact is).

It being demonstrated that the first-class secondary constraints Hy and H; do not
generate gauge transformations, the question arises what they do generate. Given
the electromagnetic precedent of the violation of Gauss’s law above, one expects that
they spoil the Lagrangian constraints, 14—0 of Einstein’s equations, the Gauss-Codazzi
relations describing how space fits into space-time. Let us calculate to find out.

For starters, one can see what the primary constraints do. This is easy, because
they only change the lapse and shift, which appear with no time derivatives. Thus one
not does not have to figure out what to do with velocities in the extrinsic curvature
tensor K;;. For p (conjugate to the lapse V), one has

{ / Pye(y)p(y), DK — 51 K)(2)} = Dy{(K — §K)eN1 £0, (25)

even if one uses DZ(KJZ — 5§K ) = 0. So here is one primary first-class constraint that
spoils a Lagrangian constraint and thus makes a bad physical change.

What does p do to the ¢ — ¢ Hamiltonian constraint, the normal-normal part of
Einstein’s equations? To answer that question, it is convenient to define a lapse-less
factor in the extrinsic curvature tensor: L;; =q¢r NK;j = %(gij — D;B3j — D;f3;). Thus

{ / Pye(y)p(y), KKy — KIK] — R(z)} = / Bye(y) {p(y), N~2) (LI Ly — L3(x))}
= 2¢(x)N N (KYK;; — K?) # 0.(29)

Thus p spoils all 4 of the constraints in Einstein’s equations. That is no surprise:
changing the lapse arbitrarily while not changing the shift vector or the spatial metric
has no chance of being a coordinate transformation, the only symmetry that Einstein’s
equations have.

What does p; do to the ¢ — ¢ momentum constraint?

([ @0 Wnito), DI ~ 8)(@)} = Dil5:Dye') + Di(5-Diy) ~ DN~ Die) 2.

Thus p; spoils some Einstein equations also—not a surprise from so blunt a tool,
which changes the shift vector arbitrarily while leaving everything else alone.
Finally, what does p; do to the ¢ — ¢ Hamiltonian constraint?

([ @ ), KKy~ K = R(@)} = (D) (K] - 8K) (@) £ 0.
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Yet again, a first-class primary constraint spoils a Lagrangian constraint, rendering
Einstein’s equations false (assuming that one still regards the altered N as the lapse).

For electromagnetism and GR, the fraction of primary constraints that generate
gauge transformations is %, whereas the fraction that generates a bad physical change,
violating the field equations, is % This isn’t a good record for the conventional wisdom.

What do the secondary constraints H; and Hy generate? Given the conventional
wisdom and the ‘proofs’ of the Dirac conjecture, one might expect them to generate
gauge transformations; but that claim has been falsified above for electromagnetism
by direct calculation. Given the example of electromagnetism above, one expects that
‘H; and Hy also spoil the Lagrangian constraints in Einstein’s equations. Qualitatively
speaking, this is because H; and Hg change the 3-metric while leaving the lapse and
shift alone, a transformation that isn’t a coordinate transformation, the only available
Symmetry.

One momentary difficulty is what to do with the 3-metric’s velocities in the extrinsic
curvature tensor K;;. The answer is that the changes in the velocities arise from time-
differentiating the 3-metric, the change of which comes from the Poisson bracket. Above
I simply used the Poisson bracket to find in electromagnetism what p’,; did to Ay,
and then calculated F),, by differentiation of A,. Such direct calculation requires no
“definitions” (apart from the uncontroversial definition of the electromagnetic field
strength) or “insights”, the reliance on which, in place of testing on well-understood
examples, too often has generated confusion in constrained dynamics. Thus to find
what happens to the extrinsic curvature tensor, one only has to find what happens
to the 3-metric (mildly nontrivial), the lapse (nothing), and the shift (nothing), and
then use the definition of K;;. Nothing can go wrong (except for performance errors
in doing the calculation, which can be corrected by further calculations). By contrast,
definitions and insights are not reliably self-correcting and hence are methodologically
inferior to calculations for understanding first-class constraints.

It is straightforward to infer the change in Kj;; from the variation of the 3-metric
due to H;, though one has to take both time and space derivatives. One gets

1 0 oo 1
oN ot i T aN
This expression can also be written as

1 0
2N Ot
By the same procedure, one finds the variation 5DZ-(K§ — 5§K ), taking care to find

0K;j = [(£egij) DiBB* + (£c9it) DB + B™ DL egij).

1
£egij — =98 £, + ga " £, + (Diff) £egij + (D;8') £egui]-

0K = 2N

dependence on the 3-metric in the connection from Dj;, the index raising of Kj; to
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Kji», and the index lowering of 3° to 3;. There are enough terms that resemble a spa-
tial coordinate transformation that one can split the transformation into a coordinate
transformation and a correction term, the reduced change ﬂKij = 0K;; — £K;;. The
change comes out to be 5DZ-(K§ — 5§K) = £EDZ-(K§ — 5§K) + D; (RS Ky — 5§h“b5Kab).
While one would not find the Lie derivative term worrisome, the terms involving §K;
threaten to spoil the ¢ — ¢ momentum constraint.

While the exact expression is a bit complicated, one can learn much about it and
compare to electromagnetism by taking a special case, the Oth order approximation,
namely, flat space-time in Cartesian coordinates: g,, = diag(—1,1,1,1), N =1, B =
0, gij = 0ij. Then one has

SDi(K) — 61K) = £0 + 0;(0"FKy; — 656" F Kap).

The reduced change in the extrinsic curvature tensor, in turn, is

1. .
5 (Eisj 550 )

JK;; = 2

Thus the variation in the ¢ — ¢ momentum constraint is
1 . .
5(6@6] — Ojaiei 75 0).

Once again a first-class constraint generates a bad physical change, spoiling part of
Finstein’s equations. Both the expression and the violation of a physically significant
physical law are analogous to the electromagnetic expressions above.

Thus far I have derived the variation in the ¢ — ¢ momentum constraint simply
using the variation in the 3-metric due to H; and the definitions of the extrinsic cur-
vature tensor and the ¢ — ¢ momentum constraint; there has been no talk of a Poisson
bracket involving velocities. But given that changes in the derivatives of the 3-metric
induced by Poisson bracket with H; are, well, induced by Poisson bracket with H;, it

is reasonable to stipulate that {aagzj G} =g %{gij(lﬂ), G} for the gauge generator of

spatial coordinate transformations. This is an instance of Anderson and Bergmann’s
expression (7.6), though theirs is intended more generally. Given the connection be-
tween G and Lie differentiation, this feature, which resembles the commutativity of Lie
and partial differentiation [60], is welcome. There is now no difficulty in understand-
ing expressions such as { [ d3yDl(KJl» - 5§K)(:E), €' (y)H;i(y)}. One also gets by Poisson
bracket {K;;(x), [ d3ye®(y)Hx(y)} = 0K;; as given above. Thus one has

{ / dPyDy(K} — 0L K) (2), € (y)Hi(y)} = £Di(K) — 6:K) + Di(h'§ Ky — 65h*FK ). (30)
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One is now in a position to see what the spatial gauge generator G[e!, ¢] does to
the ¢ — ¢ momentum constraint DZ(KJZ - 5§K )(x). While the general result is somewhat
complicated at least prima facie, a Oth order approximation is illuminating. Assuming
that one has started with flat space-time in Cartesian coordinates, the simplest case
(N =1, 3* =0, gij = d;j, and their derivatives vanish), it follows that only p; and
‘H; make surviving contributions. It is immediately evident that, in this simplest of
cases, those two contributions do in fact cancel—apart from the Lie derivative term
(which itself vanishes in this case because one is starting in flat space-time in Cartesian
coordinates and taking the Lie derivative of a vanishing 3-vector).

The difference between the GR and electromagnetic cases involving a leftover Lie
derivative term indicates that, at the level of components, one should seek only co-
variance for external symmetries, whereas one has invariance for internal gauge sym-
metries. That is good enough; one can express external coordinate transformations
by pointing at the world, but one cannot express internal gauge transformations at
all, except verbally/mathematically. Clearly observable features of the world must
be invariant under our merely verbal/mathematical redescriptions. This distinction
(covariance for external symmetries, invariance for internal symmetries) is relevant
to properly sorting out Bergmann’s concept of observables. Bergmann imported his
criterion of vanishing Poisson brackets of observables with symmetry generators from
electromagnetism to GR simply by analogy, without reflection on the different types
of symmetries involved. One would expect { [ dgyDl(KJl» - 5§K )(x), G[¢', €]} to vanish
exactly (beyond Oth order, where it has been shown already that everything properly),
apart from a spatial coordinate transformation, a Lie derivative term.

There are several remaining Poisson brackets between the secondary constraints
and the Lagrangian constraints: { [ d3ye(y)Ho(y), Dl(KJl. - 5§K)(:E)} (which has been
completed), { [ d3ye® (y)Hi(y), KijK — K? — R(z)} (which has been completed and
cross-checked and is given below), and {[ d*yeHo(y), KijK¥ — K* — R(x)} (which
has been completed). Given what has appeared for electromagnetism and what has
been found so far for GR, one predicts these Poisson brackets will all be nonzero:
the secondary first-class constraints will spoil the physically relevant ¢ — ¢ constraints,
making 40% of Einstein’s equations false if they were true initially. Hence the secondary
first-class constraints will all generate bad physical changes, not gauge transformations.
The long expressions (not shown here) tend to bear out that expectation.

One now has all the Poisson brackets needed to calculate {G[e*, ], K;; K — K2 —
R(x)} (which makes a spatial coordinate transformation and so should leave just a Lie
derivative term), {G[e*, €], Dl(Ké» —5§K)(:L')} (which gives a piece of a time coordinate
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transformation using the equations of motion), and {G[e*, é1], KK — K2 — R(x)}
(which gives a piece of a time coordinate transformation using the equations of motion).
The calculation {G[e*, ¢, K;; K — K2 — R(x)} has been explicitly carried out exactly
and indeed leaves just the expected spatial Lie derivative term. To carry it out, one
needs the Poisson bracket

. KU R K
{ / Bye"Hy(y), KijK¥ — K? — R(2)} = —£ (KK, — K> — R) — Tféhij
KiK;; — K2 KW _hiK 2 . .
—2+£EN — 2T£6Diﬁj + N(K” — W9 K)(D;3") £chy

2 . .
o (K1 = K0p)B™ £175,.(31)

This expression certainly does not look like 0 or even a spatial Lie derivative; once
again a (secondary) first-class constraint makes a bad physical change in isolation, not
a gauge transformation.

The calculation of {G[e*,é*], K;; K% — K% — R(z)} is moderately long and also
interesting. It involves Poisson brackets with a suitably tuned and smeared sum of H;,
p; and even p. The gauge generator for spatial coordinate transformations, dropping a
divergence for conceptual clarity, is [20]

m&ﬂz/fw%mmﬂaw+%m+Mm%. (32)

Some highlights of the calculation include a contribution from the Poisson bracket of
hap in the extrinsic curvature tensor K, the Lie derivative of the Christoffel symbols,
cancellation of ¢’ terms generated by different constraints, cancellation of all the many
terms of the form (D)(Dé) (where D is the spatial covariant derivative), cancellation
of all but the antisymmetric parts of the second covariant derivatives in terms of the
form 3D?%e and in terms of the form eD?(3, and cancellation of the two resulting spatial
Riemann tensor terms. (If one thought that the Poisson bracket of a velocity could not
be evaluated, but this ambiguity is harmless because the result is always multiplied by
0 [61], one would be stumped. If one thought that such a Poisson bracket were merely

0, then one would not get the correct answer.) Thus one gets the predicted result
{G[e", ), KiK'V — K% — R(2)} = —£(K;;KY — K? — R(x)). (33)

Roughly speaking, H; makes what looks almost like a coordinate transformation on the
the 3-metric h;; and its canonical momentum-—hence the attraction of the widespread
belief that H; itself generates a spatial coordinate transformation—while failing to
change the lapse and shift. The primary constraint terms in G fill in the gaps.
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One potential cause of mistakes is a peculiarity of the Anderson-Bergmann Poisson
bracket of a velocity. They say that such a quantity occasionally is necessary [1],
though frequently it is multiplied by 0 and so in many cases is not needed. One finds
that their formula {y4, F'} = %—Iz, which is desirable to make gauge transformations
and time differentiation commute as they do in the Lagrangian formalism, has the
quirk that {§a, EF} # E{§a, F} + {ya, E}F = EZ{ya, F} + F2{ya, E}, which
tends to vanish because basic Poisson brackets tend to be 0 or ‘1.” Instead one has
{94, EF} = §{ya, EF} = SE{ya, F} + F{ya, E}) = Ef{ya, F} + {ya, F}Y3¢ +
F%{yA, E} + %—Iz{yA, E}. When faced with a Poisson bracket of a velocity, one should
evaluate it sooner rather than later. A systematic justification for such results would
be desirable, and might be available in a histories-based formalism if not elsewhere.
One notices that the usual effort to formulate GR in phase space seems more or less
doomed from the start, simply because phase space is modeled on space, not space-
time. Theories with velocity-dependent gauge transformations (including GR) and
relative simultaneity are more naturally written in, e.g., phase space cross time. The
usual idea of “reduced phase space” is also problematic, in that simultaneity-changing
changes of time coordinate cannot be divided out of phase space because they were
never present in phase space originally. One has to evolve (perhaps forward in some
places and backward in others) to get to a different simultaneity hypersurface.
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