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Abstract

In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not

alone generate a gauge transformation. By direct calculation it is found that each first-

class constraint in Maxwell’s theory generates a change in the electric field ~E by an

arbitrary gradient, spoiling Gauss’s law. The secondary first-class constraint pi,i = 0

still holds, but being a function of derivatives of momenta, it is not directly about
~E (a function of derivatives of Aµ). Only a special combination of the two first-class

constraints, the Anderson-Bergmann (1951)-Castellani gauge generator G, leaves ~E

unchanged. This problem is avoided if one uses a first-class constraint as the generator

of a canonical transformation; but that partly strips the canonical coordinates of phys-

ical meaning as electromagnetic potentials and makes the electric field depend on the

smearing function, bad behavior illustrating the wisdom of the Anderson-Bergmann

(1951) Lagrangian orientation of interesting canonical transformations.

The need to keep gauge-invariant the relation q̇− δH
δp = −Ei−pi = 0 supports using

the total Hamiltonian rather than the extended Hamiltonian. The results extend the

Lagrangian-oriented reforms of Castellani, Sugano, Pons, Salisbury, Shepley, etc. by

showing the inequivalence of the extended Hamiltonian to the total Hamiltonian (and

hence the Lagrangian) even for observables, properly construed in the sense implying

empirical equivalence.
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Dirac and others have noticed the arbitrary velocities multiplying the primary con-

straints outside the canonical Hamiltonian while apparently overlooking the corre-

sponding arbitrary coordinates multiplying the secondary constraints inside the canon-

ical Hamiltonian, and so wrongly ascribed the gauge quality to the primaries alone, not

the primary-secondary team G. Hence the Dirac conjecture about secondary first-class

constraints rests upon a false presupposition. The usual concept of Dirac observables

should also be modified to employ the gauge generator G, not the first-class constraints

separately, so that the Hamiltonian observables become equivalent to the Lagrangian

ones such as the electromagnetic field Fµν .

An appendix discusses analogous calculations for GR and sketches their conceptual

consequences.

Keywords: Dirac-Bergmann constrained dynamics; gauge transformations; canoni-

cal quantization; observables; Hamiltonian methods
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1 Introduction

In the early stages of research into constrained Hamiltonian dynamics by Bergmann’s

school, it was important to ensure that the new Hamiltonian formalism agreed with the

established Lagrangian formalism. That was very reasonable, for what other criteria for

success were there at that stage? One specific manifestation of Hamiltonian-Lagrangian

equivalence was the recovery of the usual 4-dimensional Lagrangian gauge transforma-

tions for Maxwell’s electromagnetism and (more laboriously) GR by Anderson and

Bergmann [1]. 4-dimensional Lagrangian-equivalent gauge transformations were im-

plemented by Anderson and Bergmann in the Hamiltonian formalism using the gauge

generator (which I will call G), a specially tuned sum of the first-class constraints,

primary and secondary, in electromagnetism or GR [1].

At some point, early on and explicitly in Dirac’s work and increasingly in a tacit way

by the mid-1950s among Bergmann and collaborators, equivalence with 4-dimensional

Lagrangian considerations came to play a less significant role. Instead the idea that

a first-class constraint by itself generates a gauge transformation became increasingly

prominent. That claim, which goes back to Bergmann and Dirac [2–5], has been called
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the “‘standard’” interpretation [6] and is adopted throughout Henneaux and Teitel-

boim’s book [7, pp. 18, 54] and countless other places [8–10]. This idea displaced the

Anderson-Bergmann gauge generator until the 1980s and remains a widely held view,

though no longer a completely dominant one in the wake of the Lagrangian-oriented

reforms of Castellani, Sugano, Pons, Salisbury, Shepley, etc. Closely paralleling the de-

bate between the Lagrangian-equivalent gauge generatorG and the distinctively Hamil-

tonian idea that a first-class constraint generates a gauge transformation is the debate

between the Lagrangian-equivalent total Hamiltonian (which adds to the canonical

Hamiltonian all the primary constraints, whether first- or second-class) and Dirac’s ex-

tended Hamiltonian HE, which adds to the total Hamiltonian the first-class secondary

constraints.

A guiding theme of Pons, Shepley, and Salisbury’s series of works [11–13] is impor-

tant:

We have been guided by the principle that the Lagrangian and Hamiltonian

formalisms should be equivalent (see . . . ) in coming to the conclusion that

they in fact are. [14, p. 17; embedded reference is to [15]]

While proponents of the total Hamiltonian have emphasized the value of making

the Hamiltonian formalism equivalent to the Lagrangian, what has apparently been

lacking until now is a proof that the Lagrangian-inequivalent extended Hamiltonian is

erroneous. While inequivalence of the extended Hamiltonian to the Lagrangian might

seem worrisome, it is widely held that the difference is confined to gauge-dependent

unobservable quantities and hence makes no real physical difference. If that claim of

empirical equivalence were true, it would be a good defense of the permissibility of

extending the Hamiltonian. But is that claim of empirical equivalence true?

This paper shows that the Lagrangian-equivalent view of the early Anderson-

Bergmann work [1] and the more recent Lagrangian-oriented reforms are correct, that

is, are mandatory rather than merely an interesting option. It does so by showing

by direct calculation that a first-class constraint makes an observable difference to the

observable electrical field, indeed a bad difference: it spoils Gauss’s law ∇· ~E = 0. The

calculation is perhaps too easy to have seemed worth checking to most authors.

This paper also critiques the usual Hamiltonian-focused views of observables de-

ployed in the extended Hamiltonian tradition to divert attention from such a calcula-

tion or (in the case of the one paper known to me that calculates the relevant Poisson

brackets [16]) to explain away the embarrassment of a Gauss’s law-violating change

in the electric field. Attention is paid to which variables have physical meaning when

(off-shell vs. on-shell), etc., with the consequence that canonical momenta have observ-
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able significance only derivatively and on-shell rather than primordially and off-shell.

The fact that introducing a Hamiltonian formalism neither increases nor decreases

one’s experimental powers is implemented consistently. Indeed apart from constraints,

canonical momenta play basically the role of auxiliary fields in the Hamiltonian action
∫

dt(pq̇−H(q, p)): one can vary with respect to p, get an equation q̇− δH
δp

= 0 to solve

for p, and then use it to eliminate p from the action, getting
∫

dtL. One would scarcely

call an auxiliary field a primordial observable and the remaining dependence on q or

its derivatives in L derived.

This paper also diagnoses a mistaken ‘proof’ that a first-class primary constraint

generates a gauge transformation. This mistake in Dirac’s book [5] has been copied

in various places, including two more recent books [7, 10]. One can see by inspection

that the 3-vector potential Ai is left alone by the sum of first-class primary constraints,

while the scalar potential is changed. But the science of electrostatics [17] explores the

physical differences associated with different scalar potentials A0 and the same (van-

ishing) 3-vector potential Ai. Thus Dirac et al. have pronounced observably different

electric fields to be gauge-related. Dirac’s mistake involves failing to note the term

−A0p
i,i in the canonical Hamiltonian density for electromagnetism. Thinking that

the secondary constraints either were absent or cancelled out in different evolutions

(which they do not because the coefficient −A0 of the secondary constraint is gauge-

dependent), Dirac felt the need to add in the secondary first-class constraints by hand,

extending the Hamiltonian, in order to recover the gauge freedom that supposedly was

missing. Thus the motivation for the extended Hamiltonian and the original ‘proof’

that primary first-class constraints generate gauge transformations are dispelled.

This paper also explores the consequences for Dirac’s conjecture that all first-class

secondary constraints generate gauge transformations. That conjecture was predicated

on the assumed validity of the proof that primary first-class constraints generate gauge

transformations. With that proof refuted, the Dirac conjecture cannot even get started;

it rests on a false presupposition.

The actual situation is quite the reverse of the idea that a first-class constraint

generates a gauge transformation: the most obvious interesting examples of first-class

constraints, as in Maxwell’s electromagnetism and in General Relativity, change the

physical state or history, and in a bad way, spoiling the Lagrangian constraints, the

constraints in terms of q and q̇. Those are the physically relevant constraints, parts of

Maxwell’s equations (Gauss’s law) or the Einstein equations; the canonical momenta p

are merely auxiliary quantities useful insofar as they lead back to the proper behavior

for q and q̇. While there might be examples where a first-class constraint does generate
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a gauge transformation—e.g., —such cases are rare or uninteresting in comparison to

those that do not.1 Instead, a gauge transformation is generated by a special combi-

nation of first-class constraints, namely, the gauge generator G [1, 20–22]. It long was

easy to neglect 4-dimensional coordinate transformations in GR because a usable gauge

generator was unavailable after the 3 + 1 split innovation in 1958 [23, 24] rendered the

original (rather fearsome) G [1] obsolete by trivializing the primary constraints. The

3+1 gauge generator G finally appeared in 1982 [20], the lengthy delay indicating that

no one was looking for it for a long time.

For Maxwell’s electromagnetism, where everyone knows what a gauge transforma-

tion is—what makes no physical difference, namely, leaving ~E and ~B unchanged—and

where all the calculations are easy, one can test the claim that a first-class constraint

generates a gauge transformation. There is no room for “interpretation,” “definition,”

“assumption,” “demand,” or the like. Additional postulates are either redundant or

erroneous. Surprisingly, given the age of the claim [2, 3], such a test apparently hasn’t

been made before, at least not completely and successfully (c.f. [25–28], on which

more below), and has rarely been attempted. Perhaps the temptation to default to

prior knowledge has been irresistible. By now the sanction of tradition and authority

also operate. Views about observability have also deflected attention away from the

question in the context of the extended Hamiltonian. Anyway the test can be made

by re-mathematizing the verbal formula. The result is clearly negative: a first-class

constraint—either the primary or the secondary—generates a physical difference, a

change in ~E. This change involves the gradient of an arbitrary function, implying that

∇ · ~E 6= 0, spoiling Gauss’s law. Similar problems arise in GR, as will be discussed in

a subsequent work in preparation. An error early in Dirac’s book contributed to the

problem; the same problem reappears in the books by Henneaux and Teitelboim and

1A free relativistic particle with all 4 coordinates as dynamical functions of an arbitrary parameter, but

without an auxiliary lapse function N , is an example kindly mentioned by Josep Pons. If one has the

auxiliary lapse function [11, 18], one gets a primary and a secondary constraint, the latter including a piece

quadratic in momenta—looking naively like a Hamiltonian, one might say. If one instead integrates out the

lapse using ∂L
∂N

= 0, then the resulting Hamiltonian formalism has vanishing canonical Hamiltonian, while

the primary constraint becomes more interesting. Conserving the primary constraint gives no secondary or

higher constraint, partly because the canonical Hamiltonian vanishes. The solitary primary constraint is

first-class by antisymmetry of the Poisson bracket. In the absence of higher-order constraints, the gauge

generator is just the smeared primary first-class constraint, so in this case a primary constraint does indeed

generate a gauge transformation. A free relativistic particle is of course a system for which nothing happens.

Potentially more interesting is the fact that one can integrate out the lapse in GR as in the Baierlein-Sharp-

Wheeler action. Then the Hamiltonian constraint arises at the primary level [19].
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by Rothe and Rothe [7, 10].

An alternative use of a first-class constraint, using it as a generating function in a

canonical transformation, is also considered. While not illegal, such a canonical trans-

formation is unrelated to electromagnetic gauge freedom (making as much sense for

Proca’s massive electromagnetism with only second-class constraints as for Maxwell’s

with only first-class constraints) and, as Anderson and Bergmann [1] would have pre-

dicted, alters the physical significance of the canonical field variables.

2 Expected Payoff of Clarity about First-Class

Constraints and Gauge Transformations

While the process of Lagrangian-equivalent reform started some time ago, it has by

no means swept the field. One also finds works that inconsistently mix the two views.

While such issues cause little trouble in electromagnetism because all calculations are

easy and one already knows all the right answers anyway and so does not depend on the

Hamiltonian formalism, it does matter for GR, where the right answers are sometimes

unknown or controversial and many calculations are difficult.

It is therefore important both to show that the extended Hamiltonian formalism and

associated view of gauge freedom are incorrect (as this paper does) and to implement

consistently the consequences of the Lagrangian-equivalent Hamiltonian formalism in

the arenas of change and observables in GR (as successor papers will do). It has been

widely held (or worried) that GR in Hamiltonian form lacks objective change [4, 29–

32]. It also has been widely held in the Hamiltonian context, that “observables” in GR

must be constants of the motion, spatially integrated quantities, or the like [33].

Both these conclusions are motivated largely by the alleged result that a first-class

constraint generates a gauge transformation. Once one realizes that a first-class con-

straint by itself does not generate a gauge transformation, the fact that the Hamiltonian

of GR is just a sum of first-class constraints no longer implies, or even suggests, that

time evolution is just a gauge transformation. Instead room is left for showing that the

Hamiltonian formalism discloses time-dependence in exactly the same context as the

Lagrangian formalism, namely, when there is no time-like Killing vector field. Likewise

one is relieved of the expectation that an observable quantity should have vanishing

Poisson brackets with all of the first-class constraints; instead one might expect ob-

servables to have vanishing Poisson bracket with the gauge generator G. (Of course

additional modification might be necessary for Lagrangian equivalence in relation to
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GR, where the symmetry is external and one anticipates Lie derivative terms; but re-

placing the first-class constraints with G is still a step in the right direction.) While

applications to GR will be saved for another work due to the amount of calculation

involved, achieving clarity about first-class constraints and gauge transformations in

Maxwell’s electromagnetism will be a useful step.

3 A First-Class Primary Constraint Does Not

Generate a Gauge Transformation

It is widely held [5, p. 21] [7, p. 17] [34] [10, p. 68] that a primary first-class con-

straint generates a gauge transformation. Dirac purportedly proves this claim early

in his book, and the same argument reappears in many places including authoritative

books, some of them not very old. In a later section the tempting error that leads

to this conclusion, namely, neglecting the fact that first-class secondary constraints

with gauge-dependent coefficients already appear in the canonical Hamiltonian, will

be discussed. For now a direct and apparently novel (surprisingly enough) test will be

applied to show simply that the transformation effected by a first-class primary con-

straint is not generally a gauge transformation. The test is simply ascertaining what

happens to the electric field in Maxwell’s electromagnetism, the standard example of

a simple yet physically relevant relativistic field theory.

The electromagnetic field strength Fµν =df ∂µAν − ∂νAµ is unchanged by Aµ →
Aµ−∂µε. ~E and ~B are parts of Fµν and hence constructed from derivatives of Aµ. (For

a charged particle in an electromagnetic field, or for a charged scalar field interacting

with the electromagnetic field, it is the derivatives of Aµ, not the canonical momentum

conjugate to Aµ, to which charge responds.) That fact will prove important once, in

the Hamiltonian formulation, one has conceptually independent canonical momenta

pi satisfying the secondary first-class constraint pi,i = 0. Electromagnetic gauge trans-

formations are defined “off-shell,” without assuming the field equations. But off-shell

there is no relationship between Ȧi and pi, and hence none between ~E and pi. The

constraint pi,i = 0 in phase space can cease to be equivalent to ∇ · ~E = 0 if one does

something inadvisable—such as treating p0 or pi,i as if it (by itself) generated a gauge

transformation. That is somewhat as Anderson and Bergmann warned in discussing

canonical transformations that do not reflect Lagrangian invariances: the meanings

of the canonical coordinates and/or momenta can be changed [1]. The relationship

between first-class constraints, the gauge generator G, and canonical transformations
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will be explored below. It turns out that G does basically the same good thing whether

one simply takes Poisson brackets directly or makes a canonical transformation; a first-

class constraint does either something permitted but pointless (a position-dependent

field redefinition) or something disastrous (spoiling Gauss’s law).

The Legendre transformation from L and Ȧµ to H and pµ fails because pµ =df
∂L

∂Ȧµ

is not soluble for Ȧµ [35]. One gets a primary constraint p0(x) =df
∂L

∂A0,0
= 0. Likewise

in General Relativity [23, 24], one can choose a divergence in L and a set of fields

using a 3 + 1 split, the lapse N = 1/
√

−g00 and shift vector βi = 3g
ij
gj0, such that

p0 =df
∂L

∂N,0
= 0 and pi =df

∂L
∂N i,0

= 0. One needs the dynamical preservation of the

primary constraints, from which emerge secondary constraints. In electromagnetism

this constraint is Gauss’s law, or rather, something equivalent to Gauss’s law using

Ȧi = δH
δpi . The algorithm of constraint preservation terminates thanks to the constraint

algebra. The time evolution is under-specified: there is gauge/coordinate freedom due

to the presence of first-class constraints (having 0 Poisson brackets among themselves,

strongly in electromagnetism, using the constraints themselves in GR). All constraints

in both theories are first-class. The Poisson bracket is

{φ(x), ψ(y)}=df

∫

d3z
∑

A

(

δφ(x)

δqA(z)

δψ(y)

δpA(z)
− δφ(x)

δpA(z)

δψ(y)

δqA(z)

)

;

the fundamental ones are {qA(x), pB(y)} = δA
Bδ(x, y).

These familiar matters set up the belated test of whether a first-class constraint

really generates a gauge transformation. Exactly what do first-class constraints have

to do with gauge freedom? Curiously, this question has two standard but incompat-

ible answers in the literature on constrained dynamics, both dating to the 1950s in

Bergmann’s work. One of them is correct, namely, that the gauge generator G [1, 20–

22] generates a gauge transformation, a change in the description of the physical state

(or history, if GR is the theory in question) that makes no objective difference. This

answer is motivated by Hamiltonian-Lagrangian equivalence and is associated with the

total Hamilton. It was eclipsed during the 1950s and has slowly reappeared since the

1980s. However, its consequences for observables, change in GR, and similar founda-

tional questions have not been fully explored yet. The other standard answer, more

influential in the literature on canonical GR, is that a first-class constraint (by itself)

generates a gauge transformation [2, 3, 6, 7, 10, 25, 34], a distinctively Hamiltonian claim

associated with the extended Hamiltonian.

In electromagnetism the fundamental Poisson brackets are {Aµ(x), pν(y)} =

δν
µδ(x, y). The constraints are the primary p0(x) = 0 and the secondary pi,i (x) = 0.
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One hopes to keep the latter equivalent to Gauss’s law, but that isn’t just automatic be-

cause Gauss’s law involves the electric field, whereas the secondary constraint involves

a canonical momentum, which a priori is unrelated to the electric field and becomes

equal to it (up to a sign, depending on one’s conventions) only using the equations of

motion q̇ = δH
δp
.

What does p0(x) do? By re-mathematizing the claim that a first-class constraint

generates a gauge transformation, one predicts that p0(x) changes Aµ via a gauge

transformation. Smearing p0(y) with arbitrary ξ(t, y) and taking the Poisson bracket

gives [35, p. 134]

δAµ(x) = {Aµ(x),

∫

d3yp0(y)ξ(t, y)} = δ0µξ(t, x). (1)

While this expression doesn’t look just as one would expect from experience with

the Lagrangian, might it reflect (as is oftened claimed abstractly) some more general

gauge invariance disclosed by the Hamiltonian (especially the extended Hamiltonian)

formalism? One can calculate that

δFµν =df Fµν [A+ δA] − Fµν [A] = ∂µδAν − ∂νδAµ = ∂µξδ
0
ν − ∂νξδ

0
µ. (2)

This definition reflects the standard gauge variation of a velocity as the time derivative

of the gauge variation of the corresponding coordinate. Letting µ = m, ν = n, one sees

that the magnetic field is invariant [35, p. 134], which is a good sign.

What happens to the electric field ~E? Here Sundermeyer stops short [35, p. 134].2

Let µ = 0, ν = n:

δF0n = −δ ~E = ∂0δAn − ∂nδA0 = ∂0ξδ
0
n − ∂nξδ

0
0 = −∂nξ. (3)

Unless one restricts oneself to the very uninteresting special case of spatially constant

ξ (perhaps still depending on time), this is not a gauge transformation, because the

world is different, indeed worse.3 While ~B is unchanged, ~E is changed by ∂nξ(t, x).

Thus Gauss’s law ∇ · ~E = 0 is spoiled: ∇ · ~E = ∇2ξ 6= 0 typically. This spoilage of the

Lagrangian constraint is not immediately obvious because the secondary constraint

pi,i = 0 still holds. The trouble is that this expression, which lives in phase space,

2Costa et al. [16] got the same mathematical result. They failed to discern that it was problematic

physically, for reasons discussed below involving which fields are observable.
3This result shows the inadequacy of the view, which one sometimes hears, that a first-class constraint

generates a time-independent gauge transformation. Even a time-independent ξ(x) changes ~E and spoils

Gauss’s law.
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ceases to mean what one expected. p is independent of q, but q̇ is dependent on q

by definition; hence q̇ and p are independent, at least until after Poisson brackets are

calculated. ~E is a familiar function of derivatives of Aµ; the change in Aµ implies

a Gauss’s law-violating change in ~E. While still pi,i = 0 (the phase space constraint

surface is preserved), this constraint is no longer equivalent to Gauss’s law: pi,i = 0

but ∇ · ~E 6= 0. Instead ~E acts as though some phantom charge density were a source.

The relationship between p and q̇ has been altered, something that Anderson and

Bergmann warned could happen [1]. Changing ~E is a physical difference, not a gauge

transformation—indeed a bad physical difference, because spoiling Gauss’s law is bad.

If a first-class constraint does not generate a gauge transformation, one might hope

that a book on constrained dynamics would point that fact out. That expectation is

almost fulfilled. Sundermeyer commented on the “vague relation between first class

constraint transformations and local gauge transformations.” [35, p. 134]. That was

true, but an understatement. Sundermeyer appeared to be in the process of reinventing

the gauge generator in the chapters on electromagnetism and Yang-Mills theories [35,

pp. 134, 168], but did not carry on quite far enough to notice that something bad had

happened to the electric field even after calculating what happened to the potentials.

Thus he did not notice that the indirect relationship between first class constraint

transformations and local gauge transformations that he discerned implied something

crucially wrong with the usual view of the former.

3.1 Claims Overlooking This Problem

Others have fallen into error on this point [25, 27]. Bergvelt and de Kerg, applying

their Hamiltonian technique to a Yang-Mills field,

. . . first note that two points of [final constraint manifold] M2 of the form

(A0, A, π) and (Â0, A, π) (i.e. differing only in their A0-component) are

gauge equivalent. They can be connected by an integral curve of the gauge

vector field Ȧ( δ
δA0

), with Ȧ = Â0 − A0. So the A0-component of points of

M2 is physically irrelevant and without loss of generality we can ignore it.

[27, p. 133].

This physical equivalence claim contradicts the science of electrostatics, wherein one

studies what electric fields can be generated by merely the scalar potential [17, 36].

Presumably their “crucial assumption” that some freedom located in their preceding

paper had no physical significance [37] contributed to this difficulty. One already knows

from the Lagrangian formulation what the gauge freedom is, so there is no room for
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independent postulates; they are either redundant or erroneous. Gotay, Nester and

Hinds make a similar mistake with the primary constraint [25], as will appear shortly.

4 A First-Class Secondary Constraint Does Not

Generate a Gauge Transformation

What does the secondary constraint pi,i (x) do? According to a standard textbook on

constrained dynamics by Henneaux and Teitelboim, excepting a few exotic counterex-

amples,

one postulates, in general, that all first-class constraints generate gauge

transformations. This is the point of view adopted throughout this book.

There are a number of good reasons to do this. First, the distinction between

primary and secondary constraints, being based on the Lagrangian, is not

a natural one from the Hamiltonian point of view.. . . Second, the scheme is

consistent.. . . Third, as we shall see later, the known quantization methods

for constrained systems put all first-class constraints on the same footing,

i.e., treat all of them as gauge generators. It is actually not clear if one can

at all quantize otherwise. Anyway, since the conjecture holds in all physical

applications known so far, the issue is somewhat academic. (A proof of the

Dirac conjecture under simplifying regularity conditions that are generically

fulfilled is given in subsection 3.3.2.) [7, p. 18, emphasis in the original]

This is a striking passage in view of the test that is about to be run on electromagnetism

regarding its secondary constraint and the one that was just run above on the primary

constraint. Getting sensible results does require privileging the Lagrangian formalism,

so one should not downplay the primary vs. secondary distinction on Hamiltonian

grounds. It would be interesting, but will not be attempted here, to trace all the

influence of the Dirac conjecture in this standard work, as well as to address the third

consideration about quantization methods (about which see [38]).

Another way to find out what the secondary constraint pi,i does to the electric field

is simply to calculate it. To my knowledge, this has not been done, surprisingly enough,

or at least not done successfully and then appropriately understood. (Proponents of the

total Hamiltonian and its gauge generator don’t need to calculate it, because the usual

gauge transformation of Aµ to Aµ − ∂µε makes the answer obvious. Only proponents

of the extended Hamiltonian and/or the associated claim that a first-class constraint

generates a gauge transformation ought to have done so. But if they had, they’d
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likely have seen this problem before. Costa et al. did perform relevant calculations

on this point [16]; the reason that they did not discern the absurdity of the result

involves observables and will be discussed below.) The answer is the secondary first-

class constraint also changes ~E, also generally violating Gauss’s law, at least if one

uses a time-dependent smearing function. If one does not use time-dependent smearing

functions, then one has no way to write G and hence no hope of recovering the usual

electromagnetic gauge transformations as described in, for example, Jackson [17]. Part

of the trouble, as diagnosed by Pons [39], is that Dirac envisioned gauge transformations

as pertaining to 3-dimensional hypersurfaces, whereas Bergmann tended to envision

them (more appropriately for GR given the freedom to slice more or less arbitrarily)

as pertaining to 4-dimensional histories (though Bergmann seems to me not consistent

on that point). Smearing pi,i with an arbitrary function ε(t, y), one finds [16, 34]

δAµ(x) = {Aµ(x),

∫

d3ypi,i (y)ε(t, y)} = −δi
µ

∂

∂xi
ε(t, x). (4)

One can thus find the change in Fµν :

δFµν = ∂µδAν − ∂νδAµ = ∂µ(−δi
ν

∂

∂xi
ε) − ∂ν(−δi

µ

∂

∂xi
ε) = δi

µ∂ν∂iε− δi
ν∂µ∂iε. (5)

Clearly ~B is unchanged, but ~E’s change is obtained by setting µ = 0, ν = n:

δF0n = −δ ~E = δi
0∂n∂iε− δi

n∂0∂iε = −∂n∂0ε. (6)

Again ~E is changed by an arbitrary gradient, and Gauss’s law is spoiled: ∇ · ~E = ∇2ε̇.

One could avoid this change in ~E using exclusively time-independent smearing func-

tions; but one will thereby fail to recover the usual electromagnetic gauge transforma-

tions in works like Jackson [17]. Imposing time-independence (or spatial homogeneity)

on smearing functions is of course also incompatible with Lorentz invariance (to say

nothing of general covariance for the analogous issue in GR).

So neither constraint by itself generates a gauge transformation (without a pointless

and misleading restriction on smearing, at any rate, which restricts what the constraint

itself is trying to generate). Each makes a bad physical difference. Dirac wrote that

“I haven’t found any example for which there exists first-class secondary constraints

which do generate a change in the physical state.” [5, p. 24] This remark now looks

curious; it’s not easy to find anything interesting that isn’t a counterexample when the

appropriate test is run. 30 years ago Castellani said that

Dirac’s conjecture that all secondary first-class constraints generate sym-

metries is revisited and replaced by a theorem.. . . The old question whether
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secondary first-class constraints generate gauge symmetries or not . . . is then

solved: they are part of a gauge generatorG . . . [20, pp. 357, 358]. (emphasis

in the original)

After many years the force of the word “replaced” still has not been absorbed (e.g., [7]):

it involves the elimination of the old erroneous claim, not just the introduction of a

new true claim. Perhaps Castellani’s diplomatic wording has slowed the understanding

of his result. His target was the secondaries in isolation (supposedly the live issue vis-

a-vis the Dirac conjecture), but the same holds for the primaries. Neither generates a

gauge transformation by itself, but the two together, properly tuned, do.

4.1 Claims Overlooking This Problem

One can find examples where these problems should have been noticed. One is the

influential paper by Gotay, Nester and Hinds [25]. (According to Web of Science,

this paper has been cited c. 150 times.) Having developed a sophisticated theory,

they rightly turned to applying it to Maxwell’s electromagnetism. Having written the

Hamiltonian field equations, they made a transverse-longitudinal split of the 3-vector

potential ~A and its canonical momentum. They obtain, among other familiar results,

∂A⊥

∂t
= undetermined,

∂ ~AL

∂t
= −∇A⊥.

Thus “the evolution of A⊥ and ~A⊥ is arbitrary.” [25] So far, so good—at least if one

counts a single bit of arbitrariness, given that the arbitrariness in −∇A⊥ determines the

arbitrariness in the evolution of ~AL. Time will tell if that interpretation is maintained.

Let us compare the equations of motion [of which the relevant parts just

appeared] and the known gauge freedom of the electromagnetic field with

the predictions of the algorithm.. . . [Something pertaining to the primary

constraint has as] its effect to generate arbitrary changes in the evolution of

A⊥. This is clearly consistent with the field equations.

Well, it is consistent with the field equations if one pays the price by adding a gradient

in ∂ ~AL

∂t in accord with the familiar electromagnetic gauge freedom. But that turns out

not to be what they have in mind.

Turning now to the first-class secondary constraint . . . , we wonder if it is the

generator of physically irrelevant motions. . . . [Imposing a suitable demand ]
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has the effect of replacing the second of equations [shown above] by

d ~AL

dt
= −~∇A⊥ − ~∇g

and leaving the others invariant. As A⊥ is arbitrary to begin with, it is

evident that this equation is completely equivalent to [the ones shown]. The

addition of −~∇g to the right-hand side of this equation has no physical effect

whatsoever. [25, p. 2397].

It is now clear that they envisage two arbitrary functions, not one. But this latter

physical equivalence claim is clearly false. Now that the former claim is disambiguated,

it becomes clearly false also. Thus they wrongly claim of the primary and of the

secondary that a gauge transformation is generated. By taking the divergence of the

modified equation, one sees the falsehood of the second physical equivalence claim:

~∇ · ∂
~AL

∂t
+ ~∇ · ~∇A⊥ + ~∇ · ~∇g = 0

= ~∇ · ∂( ~AL + ~AT )

∂t
+ ~∇ · ~∇A⊥ + ~∇ · ~∇g

= ~∇ · ∂
~A

∂t
+ ~∇ · ~∇A⊥ + ~∇ · ~∇g

= ~∇ · (∂
~A

∂t
+ ~∇A⊥) + ~∇ · ~∇g =

~∇ · ~E + ∇2g = 0. (7)

Gotay, Nester and Hinds see their result as a vindication of the extended Hamiltonian

formalism for the case of electromagnetism, but it isn’t, because the electric field is

changed by a so-called gauge transformation and Gauss’s Law is spoiled. This problem

illustrates a remark of Henneaux and Teitelboim’s:

The identification of the gauge orbits with the null surfaces of the induced

two-form relies strongly on the postulate made throughout the book that all

first-class constraints generate gauge transformations. If this were not the

case, the gauge orbits would be strictly smaller than the null surfaces, and

there would be null directions not associated with any gauge transformation.

[7, p. 54]

Another difficulty appears in Faddeev’s treatment [26], which, largely through no-

tational confusion, gives the impression of showing that the constraint pi,i generates

a standard electromagnetic gauge transformation. He uses the symbol Ek for the
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canonical momentum conjugate to Ak. (Faddeev does not bother introducing a canon-

ical momentum conjugate to A0, so this paragraph will avoid the term “secondary

constraint.”) It isn’t difficult to show that the canonical momentum Ek has vanish-

ing Poisson bracket with the smeared constraint
∫

d3xΛ(x)∂kEk for smearing function

Λ(x). But this result is hardly decisive for the electric field. Using the letter E for a

canonical momentum cannot make a canonical momentum into the electric field, which

is still just the familiarA0,i −Ȧi, which pushes on charged matter. Taking results about

the canonical momentum and treating them as applying to the electric field is, in effect,

the fallacy of equivocation regarding the meaning of Ek. Faddeev does not investigate,

directly or indirectly, what a Poisson bracket with
∫

d3xΛ(x)∂kEk does to A0,i −Ȧi.

Hence the supposed demonstration that
∫

d3xΛ(x)∂kEk generates an electromagnetic

gauge transformation, fails. The relation between the electric field and the canonical

momentum in facts holds only on-shell, that is, after all Poisson brackets are taken,

because it reappears in the equation q̇ = δH
δp

after being discarded in the Legendre

transformation. Hence showing that the canonical momentum has vanishing Poisson

bracket with
∫

d3Λ(x)∂kEk does not show the same result for the electric field. If one

hasn’t defined a Poisson bracket for a velocity, one can at least ascertain what the

smeared divergence of the canonical 3-momentum does to A0,i and Ai and then infer

the altered Fµν (as was just done above). If one defines a Poisson bracket for a velocity

(following Anderson and Bergmann [1]), one can calculate the Poisson bracket of the

electric field with the smeared divergence of the canonical 3-momentum and find that it

isn’t 0 (as is done below). Thus the smeared divergence of the canonical 3-momentum

does not generate a gauge transformation. But the error seems to be tempting and to

pass by without remark.

5 Gauge Generator as Special Sum of First-

Class Constraints

While Dirac studies electromagnetism [5], his process of adding terms to and subtract-

ing terms from the Hamiltonian is not systematic. Neither is there much concern to

preserve equivalence to the Lagrangian formalism [40]. He seems not to calculate what

his first-class constraints actually do.

One can add the two independently smeared constraints’ actions together:

δAµ(x) = {Aµ(x),

∫

d3y[p0(y)ξ(t, y) + pi,i (y)ε(t, y)]} = δ0µξ − δi
µ∂iε, (8)
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getting their combined change in ~E:

δF0n = −δ ~E = −∂nξ − ∂n∂0ε. (9)

If one puts the constraints to work together as a team by setting ξ = −ε̇ to make the

δF0n = 0, then

δAµ(x) = {Aµ(x),

∫

d3y[−p0(y)ε̇(t, y) + pi,i (y)ε(t, y)]} = −δ0µε̇− δi
µ∂iε = −∂µε, (10)

which is good. Not surprisingly in light of the form of the gauge generator [1, 20, 22]

G =

∫

d3x(pi,i ε− p0ε̇), (11)

p0 and pi,i generate compensating changes in ~E when suitably combined. Indeed

we have pieced together G by demanding that the changes in ~E cancel out. Two

wrongs, with opposite signs and time differentiation, make a right. This tuning, not

surprisingly, is a special case of what Sundermeyer found necessary to get first-class

transformations to combine suitably to get the familiar gauge transformation for the

potentials for Yang-Mills [35, p. 168]. Sundermeyer, however, did not calculate the

field strength(s) and notice the disastrous spoilage of the Gauss’s law-type constraints

by first-class transformations. Hence recovering the familiar gauge transformation of

the potentials for him was merely a good idea.

One could make similar remarks about Wipf’s treatment of Yang-Mills fields [34,

p. 38], except that Wipf doesn’t even seem to find recovering the Lagrangian gauge

transformations a good idea; it’s simply an option. If one doesn’t have that taste,

one at any rate has “the canonical symmetries” from an arbitrary sum of the first-

class constraints [34, p. 37]; Wipf advocates extending the Hamiltonian [34, p. 28].

But what one actually one gets from an arbitrary sum of first-class constraints is the

spoilage of Gauss’s law. Combining the constraints to form the gauge generator is

not an option (as in Wipf), nor even a good idea (as for Sundermeyer); it is com-

pulsory. To my knowledge even the proponents of the gauge generator G and the

total Hamiltonian have never shown that the extended Hamiltonian and its associated

first-class-constraint-generates-a-gauge-transformation claim are disastrous.

Now with the primary and secondary constraints working together, Gauss’s law is

preserved: ∇· ~E = ∇2ξ+∇2ε̇ = ∇2(−ε̇+ ε̇) = 0. A first-class constraint typically does

not generate a gauge transformation; it is part of the gauge generator G, which here

acts as {Aµ, G} = −∂µε, {pµ, G} = 0. Hence electromagnetism is just what Jackson
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says it is [17]; if a first-class constraint alone generated a gauge transformation, the

Hamiltonian formulation would not be equivalent to the Lagrangian formulation.

Advocates of the gauge generator G combining the constraints [1, 20, 22] generally

have aimed to recover the usual transformation of the potential(s) Aµ; the transforma-

tion of the field strength(s) Fµν would follow obviously in the usual way and so did not

need explicit calculation. Part of the contribution made here is to calculate the effects

of a first-class constraint on the field strength Fµν , because calculating the effect on the

gauge-invariant observable field strength leaves nowhere for error to hide. By taking

the curl before tuning the sum of first-class constraints rather than after, one sees more

vividly why that tuned sum is required and the separate pieces are unacceptable; one

sees the looming disaster to be avoided, rather than avoiding it without seeing it. Be-

holding the resulting disaster makes the package involving the gauge generator G, the

total Hamiltonian, and Lagrangian-equivalence compulsory in a way it previously has

not seemed. The commutative diagram illustrates what differs and what is the same

in commuting the operations of inferring Fµν from Aµ and in inferring from effects of

the tuned combination G from the effects of the separate first-class constraints:

Aµ
L−equiv.−−−−−→ G =

∫

d3x(−p0ε̇+ εpi,i ) −−−→ δAµ = −∂µε

R

d3x(p0ξ+εpi,i)





y





y
curl

δAµ = δ0µξ − δi
µε,i

curl−−−→ δFµν = (δ0νξ,µ −δi
νε,iµ ) − µ↔ ν

L−equiv.−−−−−→
ξ=−ε̇

δFµν = 0

While the top line is fairly familiar, the bottom line appears to be novel, with the

merely partial exception of ([16]). It is of course unacceptable to have δFµν 6= 0, so

requiring Lagrangian equivalence from the Hamiltonian resolves the trouble.

6 Gauge Invariance of q̇ − δH
δp

= −Ei − pi = 0

In the Lagrangian formalism, one defines the canonical momenta as pi =df
∂L

∂qi,0
. In that

context, there is no difference in gauge transformation properties between pi =df
∂L

∂qi,0
;

pi simply inherits its gauge transformation behavior through this definition.

In the Hamiltonian formalism, one thing changes and another one doesn’t. What

changes is the gauge transformation behavior of pi. In the Hamiltonian formalism pi is

independent, so it no longer inherits gauge transformation behavior from ∂L
∂qi,0

. Instead

pi gets its gauge transformation behavior somehow or other (together or separately)

from Poisson brackets with first-class constraints. What does not change is the gauge
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transformation behavior of q̇i (which in many examples is heavily involved in the La-

grangian gauge transformation behavior of ∂L
∂qi,0

).

One hopes, of course, to recover from the new Hamilton’s equation q̇i − δH
δpi

=

0 what one had in the Lagrangian formalism in pi =df
∂L

∂qi,0
and then gave up in

setting the conjugate momenta free. On the other hand, if one is careless about gauge

transformation properties of pi or (more commonly) q̇i in the Hamiltonian formalism,

it is possible to spoil q̇i − δH
δpi

= 0. The equation q̇i − δH
δpi

= 0 holds only on-shell; it

is not an identity in the Hamiltonian formalism. Thus one thing that one must not

do (though one sometimes sees it done) is to pretend that one can use this equation

to define the gauge transformation properties of q̇i. One cannot do that, because

gauge transformations are generated using Poisson brackets, i.e., off-shell, at the same

logical ‘moment’ as the equations q̇i = δH
δpi

, which are also generated using Poisson

brackets. Thus there is no relationship between q̇i and δH
δpi

at that stage. For the

case of electromagnetism, there is no relationship between the electric field ~E (which

is not quite Ȧi, but is close enough) and the canonical momentum pi (which is not

quite δH
δpi , but, again, is close enough). On the other hand, one still knows the gauge

transformation behavior of the velocity q̇i, namely, the time derivative of the gauge

transformation of qi: δq̇i = (δq)i,0 . For electromagnetism, this means roughly that

one can simply calculate how the new Fµν following from the new Aµ by the usual

definition (taking the curl), differs from the old Fµν derived from the old Aµ. The

on-shell equality of q̇i and δH
δpi

thus imposes a condition of on-shell equality of the gauge

transformations of q̇i and δH
δpi

. This condition restricts what sorts of transformations

can be gauge transformations. In the case at hand, ~E is roughly Ȧi (corrected by some

unproblematic spatial derivatives of Aµ) and pi is roughly δH
δpi

(again, corrected by

some unproblematic spatial derivatives of Aµ). Thus the condition is that the gauge-

transformation properties of ~E and pi agree on-shell. While pi has vanishing Poisson

bracket with each first-class constraint separately in this case, ~E has vanishing Poisson

bracket only with the gauge generator G that combines the two first-class constraints

so as to cancel out the change that each one makes separately. Gauge invariance of

q̇i = δH
δpi

thus necessitates regarding G as the gauge generator, and not regarding each

isolated first-class constraint as generating a gauge transformation. That way, and only

that way, one keeps q̇i − δH
δpi

= 0 gauge invariant. Otherwise it isn’t clear what the

rules of the Hamiltonian formalism are.

For the specific case of electromagnetism, one has the (canonical) Hamiltonian [35,

19



p. 127]

∫

d3x[
1

2
(pi)2 +

1

4
F 2

ij − A0p
i,i ]. (12)

Thus q̇ − δH
δp

= 0 is just, for three of the four components of Aµ,

Ȧi −
δH

δpi
= Ȧi − (pi +A0,i ) = Ȧi +A0,i −pi = −Ei − pi = 0. (13)

What one reckons as gauge freedom must be compatible with this on-shell relationship.

While pi has vanishing Poisson brackets with each first-class constraint separately, Ei

is invariant under a transformation of Aµ only if one tunes the primary and secondary

constraints’ smearing functions to cancel out the induced changes in Ei. Thus being a

gauge transformation requires more than leaving pi alone (as one might think sufficient

if one gives the Hamiltonian formalism priority [16] [7, p. 20]); it requires leaving Ei

alone as well. Otherwise one makes the relationship Ȧi − δH
δpi = −Ei − pi = 0 gauge-

dependent, spoiling Hamiltonian-Lagrangian equivalence and undermining the physical

meaning of pi on-shell (the only context where pi has any physical meaning). These

concerns about the extended Hamiltonian bear some resemblance to Sugano, Kagraoka

and Kimura’s [38].

7 Counting Degrees of Freedom

One might think that correct counting of degrees of freedom would depend on whether

one takes the generator of gauge transformations to be a special combination of the

first-class constraints or an arbitrary combination. In the former case, there are only as

many independent functions of time (and perhaps space) as there are primary first-class

constraints; some of the constraints are smeared with the time derivative of functions

that smear other constraints. In the latter case there are as many independent functions

of time (and perhaps space) as there are first-class constraints. However, behavior

over time is irrelevant; hence a function and its time derivative, being independent

at a moment, count separately. Thus the counting works out the same either way [7,

pp. 89, 90]. Getting the correct number of degrees of freedom thus does not show

whether each first-class constraint or only the special combination G generates gauge

transformations.
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8 Error in Identifying Primaries As Generating

Gauge Transformations

One major reason that first-class constraints wrongly have been thought to generate

gauge transformations is that Dirac claims to prove it early in his book [5, p. 21]. One

finds the same proof repeated in other works [7, 10, 34]. The canonical Hamiltonian is,

up to a boundary term [35, p. 127],

∫

d3x[
1

2
(pi)2 +

1

4
F 2

ij − A0p
i,i ]. (14)

The total Hamiltonian adds the primary constraint with an arbitrary velocity. Dirac,

not using the gauge generator G, saw the arbitrary velocities v multiplying the pri-

maries outside his H ′ but apparently forgot the corresponding arbitrary q’s (like A0)

multiplying the secondaries inside H ′. Thus he did not notice that the first-class pri-

maries outside H ′ and first-class secondaries inside H ′ work as a team to generate

gauge transformations. Thus

[w]e come to the conclusion that the φa’s, which appeared in the theory in

the first place as the primary first-class constraints, have this meaning: as

generating functions of infinitesimal contact transformations, they lead to

changes in the q’s and the p’s that do not affect the physical state. [5, p. 21,

emphasis in the original]

One could hardly reach such a conclusion without thinking that the primaries were the

locus of all dependence on the arbitrary functions. He then conjectures that the same

holds for first-class secondary constraints. As appeared above, neither the primaries

nor the secondaries generate a gauge transformation in electromagnetism. Dirac’s fail-

ure presumably encouraged him to extend the Hamiltonian in order to recover what

was apparently missing [5, pp. 25, 31]. But it is unnecessary and obscures the relation

of the fields to those in the more perspicuous and reliable Lagrangian formalism [41,

p. 39]. Indeed the extended Hamiltonian breaks Hamiltonian-Lagrangian equivalence

[42]. Requiring Hamiltonian-Lagrangian equivalence fixes the supposed ambiguity per-

mitting the extended Hamiltonian [43].

8.1 Perpetuation in Recent Works

This same mistake continues to be made, as in ([7, 10, 34]). The problem will be

clearer if one starts with Wipf’s treatment. The time evolution of a system with
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first-class constraints is derived from the total/primary HamiltonianHp (the canonical

HamiltonianH plus the primary constraints φa with arbitrary multiplier functions µa).

For a phase space quantity F, one compares

two infinitesimal time evolutions of F = F (0) given by Hp with different

values of the multipliers,

Fi(t) = t{F,H}+ t{F, φa}µa
i i = 1, 2 . (5.18)

The difference δF = F2(t) − F1(t) between the values is then

δµF = {F, µaφa}, , µ = t(µ2 − µ1). (5.19)

Such a transformation does not alter the physical state at time t, and hence

is called gauge transformation [reference to Dirac’s book [5]] [34, p. 27]

Like Dirac, Wipf has overlooked the fact that the canonical Hamiltonian also is influ-

enced by the multiplier functions: the canonical Hamiltonian contains A0 multiplying

the secondary constraint, while the multiplier function is Ȧ0. Thus not only the µa

multiplier functions, but also the canonical Hamiltonian H , needs a subscript 1 or 2.

With this mistake corrected, one has

δµF = t{F,H2 −H1}+ t{F, φa}(µa
2 − µa

1) =

t{F,
∫

d3y − (A2
0 − A1

0)(y)π
i,i (y)}+ t{F,

∫

d3yp0(y)}(µ2 − µ1). (15)

The correct expression exhibits the secondary constraint(s) working together with the

primary constraint(s). Given the Dirac-Wipf erroneous expression involving only the

primary constraint, a ‘gauge transformation’ that changes only A0 would be exhib-

ited. But as was shown in detail above, or as follows from a moment of reflection on

electrostatics, changing A0 while leaving everything else alone does alter the physi-

cal state, and hence is not a gauge transformation. It is obvious that this expression

does not change the canonical momenta p0 or pi; what does it do to Aν? The cor-

rected expression, unlike Dirac’s, changes Aj as well, as it should. Letting F = Aν(x)

gives (changing notation from t to δt for a small interval, and recalling that our initial

moment can be called t = 0)

δµAν(δt, x) =

δt{Aν(0, x),

∫

d3y − (A2
0 −A1

0)(0, y)π
i,i } + δt{Aν ,

∫

d3yp0}(µ2 − µ1) =
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δt

∫

d3yδi
νδ(x, y)(A

2
0,i −A1

0,i )(y) + δtδ0ν (µ2 − µ1)(x) =

δtδi
ν(A2

0,i −A1
0,i )(x) + δtδ0ν(Ȧ2

0 − Ȧ1
0)(0, x) =

δt(A2
0 −A1

0),ν (0, x). (16)

This expression clearly resembles the usual gauge transformation property of electro-

magnetism −∂νε, so one can say that the two evolutions differ by a (standard) gauge

transformation, as one would hope. Thus it is false that the primary first-class con-

straints generate a gauge transformation in examples like electromagnetism, because

it is a special combination of the primaries and secondaries that does so. The primary

by itself changes ~E, as does the secondary by itself. Continuing with Wipf,

[w]e conclude that the most general physically possible motion should al-

low for an arbitrary gauge transformation to be performed during the time

evolution. But Hp contains only the primary FCC. We thus have to add to

Hp the secondary FCC multiplied by arbitrary functions. This led Dirac to

introduce the extended Hamiltonian. . . which contains all FCC [reference to

Dirac’s book [5]]. [34, p. 28]

But the secondary first-class constraint already is present in the total Hamiltonian, as

is the gauge freedom, so there is nothing missing that needs adding in by hand. Such

an omission is all the more consequential in relation to General Relativity, in which

the canonical Hamiltonian is nothing but secondary constraints (and boundary terms).

Now the problem in the treatment of Henneaux and Teitelboim can be identified

readily and treated briefly.

Now, the coefficients va are arbitrary functions of time, which means that

the value of the canonical variables at t2 will depend on the choice of the va

in the interval t1 ≤ t ≤ t2. Consider, in particular, t1 + δt. The difference

between the values of a dynamical variable F at time t2, corresponding to

two different choices va, ṽa of the arbitrary functions at time t1, takes the

form

δF = δva[F, φa] (1.35)

with δva = (va − ṽa)δt. Therefore the transformation (1.35) does not alter

the physical state at time t2. We then say, extending a terminology used in

the theory of gauge fields, that the first-class primary constraints generate

gauge transformations. [7, p. 17]
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By now it has been seen that this statement is false. But its proximate cause is evi-

dent after looking at Wipf’s treatment, namely, neglecting the fact that the secondary

constraint was already present in the canonical Hamiltonian with a gauge-dependent

coefficient in the form
∫

d3y − A0(y)p
i,i (y). They give just Dirac’s argument again.

But it simply isn’t the case that the difference between the values of the two evolutions

is given by δF = δva[F, φa], because the two evolutions are also influenced by their

differing terms of the form
∫

d3y−A0(y)p
i,i (y) or the like from the canonical Hamilto-

nian, at least for theories with secondary first-class constraints like electromagnetism,

Yang-Mills, and GR.

Unfortunately Dirac’s mistake also reappears in the recent book by Rothe and

Rothe [10, p. 68]. Failure to look inside the black box H , the canonical Hamiltonian,

and see the secondary first-class constraints while doing this little calculation seems

to be the cause. Choosing Ai as a phase space quantity to test the behavior of the

quantity built from primary first-class constraints gives an easy diagnostic to see that

no gauge transformation is generated.

9 Dirac Conjecture’s Presupposition

Dirac, having supposedly shown that primary first-class constraints generate gauge

transformations, conjectured that secondary first-class constraints do the same [5].

Eventually it was found that this conjecture has counterexamples, namely ineffective

constraints, though they are a bit exotic and might sensibly be banned [7]. But the

Dirac conjecture has a much more serious problem, namely, the falsehood of its presup-

position that primary first-class constraints generate gauge transformations. Whether

that problem makes the Dirac conjecture false or lacking in truth value will depend on

the logical details of the formulation, but it certainly winds up not being an interesting

truth. Complementing the falsification by direct calculation above is a diagnosis (just

above) of the mistake that Dirac and others have made in failing to pay attention to

the term
∫

d3x− A0p
i,i term in the Hamiltonian.

How does one reconcile this result that a primary first-class constraint does not

generate a gauge transformation with the multiple ‘proofs’ of the Dirac conjecture in

the literature [7, 44–46] and the statements that it can be made true by interpretive

choice [6, 7]? These proofs usually presuppose that a Dirac-style argument has al-

ready successfully addressed primary first-class constraints, so the only remaining task

involves secondary or higher order constraints. The remaining task tends to involve

statements about first-class constraints, which are simply assumed to generate gauge
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transformations individually. Thus ‘proofs’ of the Dirac conjecture are frequently just

statements about Poisson brackets and first-class secondary (and higher) constraints—

straightforward technical questions with results that are, presumably, correct. Con-

ceptually involved proofs of the Dirac conjecture, which essentially talk about gauge

transformations, must fail. But mere technical statements about vanishing Poisson

brackets are not threatened at all. Hence there is no tension with the correctness of

the calculations.

10 Observability of P i
vs. Ei Can Be Crucial

While it is acknowledged that the extended Hamiltonian not equivalent to L strictly,

this inequivalence is often held to be harmless because they are equivalent for “ob-

servables.” This claim presumably is intended to mean that the extended Hamiltonian

is empirically equivalent to L, differing only about unobservable matters. Such a re-

sponse will be satisfactory only if “observable” here is used in the ordinary sense of

running experiments. Technical stipulations about the word “observable,” especially

distinctively Hamiltonian stipulations, are irrelevant. Unfortunately it is not the case

that the extended Hamiltonian is empirically equivalent to the Lagrangian, a fact that

has been masked by equivocating on the word “observable” between the ordinary ex-

perimental sense and a technical Hamiltonian sense. It is peculiar to think of observing

canonical momenta conjugate to standard Lagrangian coordinates—in fact it seems to

be impossible to observe that kind of canonical momentum as such. What would be the

operational procedure for observing pi? Rather, its experimental significance is purely

on-shell, parasitic upon the observability of suitable functions of qi and/or derivatives

of qi—derivatives (spatial and temporal) of Aµ in the electromagnetic case. One neither

acquires new experimental powers (such as the ability to sense canonical momenta) nor

loses old ones (such as the ability to detect a certain combination of derivatives of Aµ)

by changing formalisms from the Lagrangian to the Hamiltonian. There are two ways

to see that pi is not the primordial observable electric field. The first way involves the

fact that pi does not even appear as an independent field in the Lagrangian formalism,

which formalism is correct and transparent. While it is perfectly acceptable for some

quantity to be introduced that is on-shell equivalent to the Lagrangian electric field,

there is no way for that new quantity to become the electric field primordially, rather

than merely derivatively and on-shell. Aµ or a function of its derivatives still has that

job. Apart from constraints, canonical momenta are auxiliary fields in the Hamiltonian

action
∫

dt(pq̇−H(q, p)): one can vary with respect to p, get an equation q̇− δH
δp

= 0 to
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solve for p, and then eliminate p to get
∫

dtL. One would scarcely call an auxiliary field

a primordial observable and the remaining q in L derived! The second way involves the

fact that the electric field is what pushes on charge; but it is easy to see that in both the

Lagrangian and Hamiltonian contexts, what couples to the current density is not pi,

but Aµ. For a complex scalar field ψ, the Lagrangian interaction term takes the form

∼ (ψ∂αψ
∗ − ψ∗∂αψ)Aα + ψψ∗A2. The absence of terms connecting ψ with derivatives

of Aµ implies that charge couples to Aµ and/or its derivatives, not to the canonical

momenta conguate to Aµ, even in the Hamiltonian context. What is the operational

procedure for measuring pi? The only plausible answer is to use on-shell equivalence to

the empirically available F0i, which involves derivatives of Aµ. Otherwise, what reason

is there to believe that any procedure for measuring pi involves a measurement of the

quantity that pushes on charge? Thus one should be disturbed, pace Costa et al. [16],

by the failure of Ȧi = δHE

δpi
to return the usual Lagrangian relation between pi and the

derivatives of Aµ from the extended Hamiltonian. The coupling of charge-current to

Aµ ensures that Aµ or something built from its derivatives is the primordial observable

electric field. Thus the usual argument [7, 10, 16] to show that the inequivalence of the

extended Hamiltonian to the Lagrangian is harmless because irrelevant to observable

quantities, fails; unless “observables” are taken in the ordinary empirical sense, rather

than a technical Hamiltonian sense, empirical equivalence is not shown.

The ‘proof’ of the Dirac conjecture by Costa et al. [16] deserves special comment.

This paper goes beyond other treatments of the supposed equivalence of the extended

Hamiltonian to the total Hamiltonian for observables [7, 10] in explicitly addressing

the example of electromagnetism in sufficient detail. The equivalence conclusion is

reached by explicitly taking the canonical momentum pi to be the primordial physi-

cally meaningful quantity playing the role of the electric field. For a function of canon-

ical coordinates and momenta (no time derivatives), having vanishing Poisson bracket

with the gauge generator requires having vanishing Poisson bracket with each first-

class constraint, because different orders of time derivative of the smearing function

cannot cancel each other out [16]. But that latter condition opens the door to taking

all first-class constraints to generate gauge transformations and using the extended

Hamiltonian, they claim. They recognize that one can use Hamiltonian’s equations

from the total Hamiltonian and find a quantity that is equal in value on-shell to a

gauge-invariant function of q and p. I observe that the electric field is in this category.

They also observe that such a quantity is invariant under the gauge generator of the

total Hamiltonian (the specially tuned combination of first-class constraints) and is not

invariant under the first-class constraints separately, as I emphasized above. In their
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words,

[o]ne can verify the invariance under [the usual electromagnetic gauge trans-

formation of Aµ] of the equations of motion . . .

∂0Aj = πj + ∂jA0, (3.8b)

. . . deriving from the total Hamiltonian. . . .

We next recognize F ij , πj . . . [matter terms suppressed] as the canonical

forms of the basic gauge-invariant quantities of electrodynamics. One can

easily check that all these functions are indeed first class. Thus, F ij ,

πj. . . are also invariant under the extended infinitesimal transformations

[generated by an arbitrary sum of independently smeared first-class con-

straints]. . . . [That extended first-class transformation] leaves invariant the

equations of motion. . .

∂0Aj = πj + ∂jA0 − ∂jξ2, (3.12b)

. . . arising from the extended Hamiltonian

HE = H +

∫

d3x{ξ1(x)π0(x) + ξ2(x)[∂jπj(x)− . . .]}. (3.13)

[spinor contribution in secondary constraint suppressed]

Here ξ1 and ξ2 are arbitrary Lagrange multipliers.

As a matter of fact, the sets of equations of motion (3.8) and (3.12) are

different. However, irrespective of whether one starts from (3.8) or (3.12)

one arrives at the Maxwell equations

∂0F ij = ∂iπj − ∂jπi, (3.14)

∂0πj = ∂iF ij . . . , (3.15)

[16, pp. 407, 408]

I note the absence of Gauss’s law!

They continue:

Therefore, HT and HE generate the same time evolution for the gauge-

invariant quantities, as required by [the equation of motion for gauge invari-

ant phase space functions].
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We now discuss the alternative formalism-dependent realizations of the elec-

tric field (−πj). From (3.8b) one obtains

πj = F 0j. (3.17)

Hence, F 0j is a faithful realization of πj within the formalism of the total

Hamiltonian. We can check that F 0j is invariant under [the gauge generator

related to the total Hamiltonian, which combines the first-class constraints

with related smearings] but not under [the sum of separately smeared first-

class constraints, which is related to the extended Hamiltonian formalism].

[16, p. 408]

This is the crucial point announced in my paper’s title—but Costa et al. fail to rec-

ognize the absurdity of the results of the extended Hamiltonian formalism. They

continue:

On the other hand, the formalism of the extended Hamiltonian provides the

equally faithful realization for πj [see Eq. (3.12b)]

πj = F 0j + ∂jξ2, (3.18)

which is invariant under [the sum of independently smeared first-class con-

straints]. One should not be puzzled by the fact that (3.18) does not coincide

with (3.17) or, what amounts to the same thing, with the Lagrangian defi-

nition of πj . . . . [16, p. 408]

But one should be puzzled. If πj is equated to the electric field (as they say), and

if F 0j is just an abbreviation for a familiar expression involving derivatives of Aµ (as

follows from (3.12b) and (3.18)—and hence is still the electric field!), then we have the

contradiction (electric field = electric field + arbitrary gradient). With this contra-

diction in hand, one can derive various other plausible errors. This arbitrary gradient

is what spoiled Gauss’s law above. In any case F 0j has a much better claim to be

the electric field than does πj, which is just an auxiliary field in the Hamiltonian ac-

tion. Thinking that functions of phase space were the only quantities that needed

to stay gauge invariant—that is, not considering the actual electric field—is what

opened the door to the extended Hamiltonian and taking each first-class constraint as

separately generating a gauge transformation. One should infer that an isolated first-

class constraint does not generate a gauge transformation in electromagnetism. F 0j

is the primordial observable electric field; the canonical momentum as an independent

field is formalism-dependent, not even appearing in the Lagrangian formalism. In a
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Lagrangian for charged matter with an electromagnetic field, charge-current couples

primordially to Aµ, from which ~E is derived, and not to the canonical momentum. Ve-

locities (such as appear in the electric field) are not physically recondite—automobiles

have gauges that measure them—but canonical momenta are: they acquire physical

significance solely on-shell, as Costa et al. remind us. Hence failure to recognize the

fundamentality of the Lagrangian formalism leads them to claim to have vindicated

the Dirac conjecture, when they had all the ingredients and calculations necessary to

refute it instead.

One might also worry that physically meaningful quantities are expected to have

vanishing Poisson bracket with the gauge generator [16], given that tensors in GR will

not qualify due to the Lie derivative term. (This problem is peculiar to external sym-

metries.) While this requirement is not unusual, it introduces the difficulties afflicting

the notion of observables in GR into the presumably more perspicuous discussion of

equivalence of equations of motion.

Crucial to gauge-transforming the electric field (as opposed to the canonical mo-

mentum to which it is equal on-shell) is having a gauge transformation formula for

velocities. In a Hamiltonian formalism it is tempting, though inadvisable, to avoid

velocities in favor of functions of q and p. But the Lagrangian formalism essentially

involves the commutativity of gauge variation and time differentiation [47, 48]. Impos-

ing that condition in the Hamiltonian formalism using the total Hamiltonian (the one

equivalent to the Lagrangian) yields the gauge generator G [47, 48]. Thus the Hamilto-

nian formalism naturally can give the correct gauge transformation for velocities and

quantities built from them, such as the electric field. One does not need to avoid look-

ing for gauge-invariant quantities involving the velocities and default to functions of

only q and p in a Hamiltonian context, as Costa et al. did [16]. Alternately, one can

be satisfied in a (total) Hamiltonian formalism with functions of q and p [49] but, in

view of the need to preserve Hamiltonian-Lagrangian equivalence, avoid seeking the

largest collection of transformations (the first-class transformations rather than just

the gauge generator G) that preserve the phase space quantities at the expense of

Hamiltonian-Lagrangian equivalence.
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11 Anderson and Bergmann (1951): Canonical

Transformations and Lagrangian-Equivalence

None of this confusion associated with Hamiltonian transformations that aren’t in-

duced by Lagrangian gauge transformations should be much of a surprise, ideally,

in that Anderson and Bergmann explicitly discussed how the preservation of the La-

grangian constraint surface, which they called Σl, corresponds to canonical transforma-

tions generated by the gauge generator G [1]. Hence one would expect transformations

that aren’t generated by G—e.g., those generated by an isolated primary constraint

in a theory (such as Maxwell’s electromagnetism or GR) where the gauge generator G

doesn’t contain that primary constraint in isolation (i.e., smeared by its very own ar-

bitrary function)—not to preserve the Lagrangian constraint surface. Hence the point

that a first class constraint by itself (in theories where such does not appear in isolation

in G) generates not a gauge transformation, but a violation of the usual Lagrangian

constraint surface, is already implicit in Anderson and Bergmann—at least if one is

working with canonical transformations. (Outside the realm of canonical transforma-

tions, one can still take Poisson brackets directly. But then there are far fewer rules

and hence there is much less reason to expect anything good to happen.) As they

observe,

Naturally, other forms of the hamiltonian [sic] density can be obtained by

canonical transformations; but the arguments appearing in such new ex-

pressions will no longer have the significance of the original field variables

yA and the momentum densities defined by Eq. (4.2) [which defines the

canonical momenta as πA ≡ ∂L
∂ẏA

]. It follows in particular that transforma-

tions of the form (2.4) [“invariant” transformations changing L by at most

a divergence, such as electromagnetic gauge transformations or passive co-

ordinate transformations in GR] will change the expression (4.9) [for the

Hamiltonian density] at most by adding to it further linear combinations of

the primary constrains, i.e., by leading to new arbitrary functions wi. [1, p.

1021]

So they invented the gauge generator G to make sure that the q’s and p’s keep their

usual meanings.

Unfortunately the point was lost after Bergmann, Anderson and Dirac repeatedly

said things that were incompatible with that correct claim about the gauge generator

G, namely, that a first-class constraint generates a gauge transformation. Accounting

30



for the change in Bergmann’s and Anderson’s view is beyond the scope of this paper.

It seems to be, at least in part, connected with the tendency to drop the primary

constraints and their associated canonical coordinates from the phase space, especially

once the primary constraints for GR were expressed in the trivial form of the vanishing

of some momenta. The view that a first-class constraint generates a gauge transforma-

tion then became the conventional wisdom expressed in countless works for decades,

with lingering consequences (such as regarding observables [50, 51]) even where the

gauge generator has been gaining ground.

11.1 Canonical Transformations Generating Position-

Dependent Field Redefinitions

If one wishes, one can treat a smeared primary constraint as a canonical transformation

generator in the sense of ([1, 52]) and preserve some sense of physical equivalence for

the transformation generated by the primary first-class constraints. That is a feature of

dynamics in general, not Dirac-Bergmann constrained dynamics in particular. It makes

use of p0, but not the fact that p0 = 0 (its being a constraint) or its having vanishing

Poisson brackets with the other constraints and Hamiltonian (its being first-class). But

equivalence is preserved only by losing some of the original fields’ meanings.

Let C =
∫

d3yε(t, y)p0(y). One can add to the Hamiltonian action the time integral

of the total time derivative of this quantity. One gets new canonical coordinates,

QA = qA + δC
δpA

, and new canonical momenta, PA = pA − δC
δqA , and a slightly altered

Hamiltonian, K = H + ∂C
∂t

= H +
∫

d3yp0
∂ε
∂t
, which adds a term proportional to

a primary constraint only. Of the new Q’s, only the 0th differs from the old q’s

(Q0 = q0 + ε); the new momenta are the same as the old. The trouble arises subtly:

for the other Q’s velocity-momentum relation, Q̇a = δK
δPa

, the dependence on the 0th

canonical coordinate in K involves the altered Q0. The electromagnetic scalar potential

is involved in the relation between Ȧi and pi, so changing the scalar potential alters

the relationship between the canonical momenta and the velocities, the sort of issue to

which Anderson and Bergmann called attention. For q0 corresponding to A0 (or the

lapse N or shift vector βi in General Relativity), one can change q0 alone however one

likes over time and place (which is what the corresponding primary constraint does)—

but only at the cost of ceasing to interpret the new canonical coordinate Q0 = q0 + δq0

as (minus4) the scalar potential A0 (or lapse N or shift βi)! The new Hamiltonian K

4I use − + ++ metric signature. But indices are placed up and down freely, depending on whether the

general paradigm QA or the specific case Aµ is more relevant.
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differs from H only by a term involving a primary constraint p0 = P0, which doesn’t

matter. The new velocity-momentum relationship is

Q̇i =
δK

δPi
=

∂

∂Pi
(
1

2
P 2

j +
1

4
F 2

jk + Pj∂j [Q
0 − ε]) = Pi + ∂i(Q

0 − ε). (17)

One can solve for Pi and then take the 3-divergence:

Pi,i = ∂i(Q̇
i −Q0,i +ε,i ) = ∂i(q̇

i − ∂iq
0) = ∂iF0i = −∂iEi. (18)

By using the full apparatus of a canonical transformation and keeping track of the fact

that Q0 is no longer (up to a sign) the electromagnetic scalar potential as q0 is, one can

resolve the contradiction about vanishing vs. nonvanishing divergence of the canoni-

cal momentum vis-a-vis the electric field. Such reinterpretation, which strips the new

canonical coordinates of some of their usual physical meaning and replaces them with a

pointlessly indirect substitute, though mathematically permitted, is certainly not what

people usually intend when they say that a first-class constraint generates a gauge trans-

formation. What they mean, at least tacitly, is that the fields after the transformation

by direct application of Poisson brackets (not a canonical transformation) have their

usual meaning—hence one would (try to) calculate the electric field from Q̇i − Q0,i
(thus spoiling the Lagrangian constraints, as shown above) rather than Q̇i −Q0,i +ε,i .

Supposing that one attempts to retain the old connection between the 0th canonical

coordinate and the electromagnetic scalar potential, one can calculate the alteration

in the electric field (that is, the electric field from QA less the electric field from qA)

as δF0n = ∂0δAn − ∂nδA0 = 0 − ∂n
δC
δp0

= −∂nε, as found above by more mundane

means. To avoid the contradiction of a physics-preserving transformation that changes

the physics, one can and must re-work the connection between Q0 and A0, as shown.

But simply avoiding this sort of generating function, one that is not (a special case of)

G, is more advisable.

In short, as a canonical transformation generator with suitable smearing, p0, the

primary first-class constraint, generates only an obfuscating position-dependent change

of variables. It has nothing to do with the usual gauge freedoms of electromagnetism

(or GR, by analogy). It has nothing to do with p0’s being first-class; the canoni-

cal transformation would work equally well for Proca’s massive electromagnetism, in

which that constraint is second-class. Only in detail does it even depend on p0’s being

a constraint, as opposed to merely something that lives on phase space. It is easy

to see reasons not to make such transformations, and wrong to make them without

understanding what they do.
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One can also try the secondary constraint pi,i as a generator of a canonical

transformation: D =
∫

d3y − ε,i p
i(y) after dropping a boundary term. The new

canonical coordinates are QA = qA + δD
δpA

= qA − ε,i δ
i
A = Aα − ε,i δ

i
α. The new

canonical momenta are PA = pA − δD
δqA = pA. One sees that the new Qi are not

the original electromagnetic 3-vector potential Ai anymore. (They are not a gauge-

transformed vector potential, either, unless one throws the trouble onto Q0 by strip-

ping it of its relation to the electromagnetic scalar potential.) The new Hamiltonian is

K = H + ∂D
∂t = H +

∫

d3y − piε,0i , which differs from the old by a term proportional

to the secondary constraints (and perhaps a boundary term). Thus the altered Q̇− P

relation is Q̇i = δK
δPi

= Pi +Q0,i −ε,0i . One can take the divergence and solve for P i,i :

P i,i = ∂i(Q
i,0 −Q0,i +ε,0i ) = ∂i(q

i,0 −∂iq
0) = ∂iF0i = −∂iEi. By taking into account

the fact that the new Q’s are no longer all just the electromagnetic 4-vector poten-

tial Aµ, one resolves the contradiction between vanishing and nonvanishing divergence.

The electric field ~E, which is an observable by any reasonable standard, is no longer

specified simply by (derivatives) of the new canonical coordinates Q, but requires the

arbitrary smearing function ε used in making the change of field variables also. That

is permissible but hardly illuminating.

One can do basically the same thing with Proca’s massive electromagnetism [17, 35,

44], taking the secondary constraint, now second-class, as the generator of a canonical

transformation. The secondary sprouts a new piece m2A0. The transformed massive

Hamiltonian K gets an extra new term m2Q0ε̇. The new canonical momenta reflect

a change in the primary constraint form: P0 = p0 −m2ε. But everything cancels out

eventually, leaving equations equivalent to the usual ones for massive electromagnetism,

naturally. Only in detail does the first-class (massless) vs. second-class (massive) char-

acter of the secondary constraint make any difference. As the generator of a canoni-

cal transformation, a first-class constraint doesn’t generate a gauge transformation in

massless electromagnetism any more than a second-class constraint generates a gauge

transformation in massive electromagnetism. Both generate permissible but pointless

field redefinitions.

The key difference is that a special combination of first-class constraints in massless

electromagnetism does generate a gauge transformation, whereas in massive electro-

magnetism, there is no gauge transformation to generate, so no combination of any-

thing can generate one. Amusingly, given that the key issue is changing Aµ by a

four-dimensional gradient, and not directly the first-class or even constraint character

of the generator, one can use the same special sum
∫

d3y[−p0(y)ε̇(t, y) + pi,i (y)ε(t, y)]

as applied to massive electromagnetism to generate a Stueckelberg-like gauged version
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of massive electromagnetism, with the smearing function ε, in this case not varied in

the action, as the gauge compensation field.
∫

d3y[−p0(y)ε̇(t, y) + pi,i (y)ε(t, y)] is no

longer a sum of constraints (not even second-class ones, though p0 is a second-class

constraint). This possibility might take on some importance in application to installing

artificial gauge freedom in massive Yang-Mills theories, where the proper form has been

a matter of some controversy [53–58].

Finally, one can use the gauge generator G as the generator of a canonical transfor-

mation in Maxwell’s electromagnetism. It turns out that, in contrast to an arbitrary

function on phase space (or a first-class constraint) as a generator, the gauge generator

G generates the very same thing for the canonical variables as a canonical transforma-

tion as it does ‘by hand’ by taking the Poisson bracket directly with q and p. Dropping

a spatial divergence, one has G =
∫

d3x − ε,µ p
µ. One gets the new canonical coordi-

nates QA = qA + δG
δpA

= Aα−ε,α and new canonical momenta PA = pA− δG
δqA = pA, and

a slightly altered Hamiltonian, K = H + ∂G
∂t = H +

∫

d3y− pµε,µ0 , which adds related

terms proportional to the primary and secondary constraints (and a spatial boundary

term). Significantly, QA−qA = δG
δpA

= {qA, G} and PA−pA = − δG
δqA = {pA, G}.That is,

G does the very same thing to qA and pA whether one simply takes the Poisson bracket

with G directly or uses G to generate a canonical transformation. Thus if one uses G,

one can be nonchalant (as people often are using first-class constraints separately [5, p.

21]) about whether one is making a canonical transformation or is merely directly tak-

ing a Poisson bracket; that lack of concern does not carry over to expressions different

from G, however. G does one good thing, recovering the usual electromagnetic gauge

transformations, used either way. By contrast, each isolated first-class constraint offers

a choice of two bad things (one disastrous, one merely awkward): it can either destroy

the field equations if used directly in Poisson brackets, or generate a confusing change

of physical meaning of the variables as the generator of a canonical transformation.

One can summarize in a table some of the results about using the gauge generator

G vs. a smeared individual constraint or other phase space function, and using it

as a canonical transformation generating function vs. using it directly via Poisson

bracket. Presumably the experience for electromagnetism largely carries over for other

constrained theories. For the first-class theory one has these phenomena:

Canonical transformation Direct Poisson bracket

Gauge generator G Gauge transformation Gauge transformation

Smeared constraint Locally varying field redefinition Spoils ~∇ · ~E = 0

The entries in the first column can be described in more detail. One can illustrate

the illuminating (invariant) canonical transformations related to G (top left corner)
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and the obscuring but permissible more general canonical transformations (bottom

left corner) in the following diagrams.

The first is a commutative diagram with well understood entries and transforma-

tions. (The equation numbers correspond to the remarks in Anderson and Bergmann

[1].)

L invariant gauge 2.4:−−−−−−−−−−−−−−−−−−−−→
δL=div, δAµ=∂µξ, δgµν=£ξgµν

L′

constrained Legendre





y





y

constrained Legendre

H invariant canonical G−−−−−−−−−−−−−−−−−−−−−→
preserves qA sense, 4.2: πA= ∂L

∂q̇A

H′

One can of course also make point transformations, changes among the qA’s only. In

electromagnetism, one might use Aµ instead of Aµ; that is probably the least bad choice

if one does not stick with Aµ. In GR one is free to use gµν, g
µν (which equals gµν√−g),

or various other fields, for example. For Anderson and Bergmann, this freedom to

make point transformations is already implied by their rather abstract use of qA (or

actually yA in their notation) and rather general form of gauge transformations. A

field redefinition from one choice of qA to another will of course induce a contragredient

change in the canonical momenta. One can also add a divergence to the Lagrangian

density. Such an alteration will also tend to alter the canonical momenta, but not

mysteriously. These two changes were combined to simplify the primary constraints

of GR in 1958 [23, 24]. One could augment the diagram above to indicate more fully

the resources of Lagrangian field theory. The main point, however, is to distinguish

adequately what is allowed within the Lagrangian formalism from the greater, and

more dangerous, generality of the Hamiltonian formalism.

The second is an unhealthy aspiring commutative diagram illustrating how allowing

general canonical transformations—for example, a single primary or secondary first-

class constraint—leads to entries and transformations that are not widely understood,

if meaningful at all.

L ?−−−→ L′

constrained Legendre





y

x





inverse constrained Legendre?

H general canonical−−−−−−−−−−−−−−−−−−−−−−→
violates qA sense or 4.2: πA= ∂L

∂q̇A

H′
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A canonical transformation to action-angle variables, for example, would give a Hamil-

tonian that might not readily admit an inverse Legendre transformation back to a

Lagrangian. Suffice it to say that Hamiltonian-Lagrangian equivalence is obscured by

general canonical transformations. It is not very obvious what the resulting equations

mean physically, given that the usual Lagrangian variables such as gµν , not the canon-

ical momenta, are the ones with known direct empirical meaning. General canonical

transformations are useful tricks in mechanics, where one already understands what ev-

erything means, but needs to solve specific problems. But a position-dependent change

of variables when one is already on marshy ground, having difficulty identifying change

or observables, is inadvisable without the greatest care.

12 How to Get Right Electromagnetic Fields

with Wrong Gauge Transformations

One might think that misidentifying the generator of a gauge transformation would

lead to selecting the wrong fields in mildly nontrivial examples such as electromag-

netism. That a first-class constraint generates a gauge transformation was held by

Bergmann and collaborators [2–4], not just Dirac [5]. Bergmann commented that, for

electromagnetism, the physical variables are (omitting sources, unlike him) ∇× ~E and

∇ × ~B because they are neither 0 nor gauge-dependent [2]. Bergmann evidently got

the right fields for electromagnetism. How is that result compatible with his having

the wrong generator(s)?

Using his condition of vanishing Poisson bracket with each first-class constraint, one

should find that ∇ · ~E is gauge-dependent but ∇ × ~E is gauge-invariant; ~B is gauge-

invariant, but ∇· ~B = 0. That ∇· ~E is gauge-dependent is incredible, but it is tempting

not to do the calculation because the expected answer is obvious. By contrast, using

G [1], one finds that ~E is gauge-invariant, as is ~B, but both have vanishing divergence.

One keeps the same fields, but for different reasons. Given the wrong notion, one would

exclude ∇ · ~E because it is gauge-dependent. Given the right notion (using G), one

excludes ∇ · ~E as vanishing. Thus one sees how, in this example, the wrong gauge

transformations are consistent with the correct gauge-invariant non-vanishing ~E and
~B parts, the curls.
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13 Presupposition of Dirac Observables

The usual concept of “Dirac observables” as entities that Poisson-commute with all

first-class constraints is interesting largely on the assumption that a first-class con-

straint generates a gauge transformation. Now that it is clear that a first-class con-

straint generally does not generate a gauge transformation, the usual concept of Dirac

observable, so defined, is of rather lessened interest, if any. One might nonetheless cal-

culate how the electromagnetic field strength Fµν fares when measured by the crooked

rod of Dirac observables as traditionally defined. One can take its Poisson bracket di-

rectly once one defines, with Anderson and Bergmann, the Poisson bracket of the time

derivative of a canonical coordinate to be the time derivative of the Poisson bracket of

the canonical coordinate [1]:

{q̇A, } =
∂{qA, }
∂t

. (19)

This definition facilitates recapitulating a calculation made above (Eqn. 3) by more

pedestrian means. Smearing p0(y) with arbitrary ξ(t, y) and taking the Poisson bracket

gives

δFµν = {Fµν(t, x),

∫

d3yp0(y)ξ(t, y)} = {∂µAν − ∂νAµ,

∫

d3yp0(y)ξ(t, y)} =

∂µξδ
0
ν − ∂νξδ

0
µ. (20)

Let µ = 0, ν = n:

δF0n = −δ ~E = ∂0δAn − ∂nδA0 = ∂0ξδ
0
n − ∂nξδ

0
0 = −∂nξ 6= 0. (21)

As was also found above, while ~B is unchanged, ~E is changed by ∂nξ. Hence the electric

field is not a Dirac observable by the usual reckoning, which is odd. That is contrary to

what Matschull found [28], likely because the temptation to default to the conventional

wisdom overwhelmed the motivation to do trivial calculations.

What does the secondary pi,i (x) do? That calculation also can be redone using the

Poisson bracket now:

δFµν = {Fµν(t, x),

∫

d3ypi,i (y)ε(t, y)} = {∂µAν − ∂νAµ,

∫

d3y − pi(y)
∂ε

∂yi
}

= ∂µ

∫

d3yδ(x, y)(−δi
ν

∂ε

∂yi
) − µ↔ ν = δi

µ∂ν∂iε− δi
ν∂µ∂iε. (22)

Clearly ~B is unchanged, but ~E’s change is obtained by setting µ = 0, ν = n:

δF0n = −δ ~E = δi
0∂n∂iε− δi

n∂0∂iε = −∂n∂0ε. (23)
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Again ~E is changed by an arbitrary gradient. This is again contrary to Matschull’s

claim [28].

By now the remedy is clear: the primary and secondary constraints should be suit-

ably combined in G. A plausible replacement for the usual concept of Dirac observable,

at least for electromagnetism and other theories with internal symmetries, is to look

for quantities that have vanishing Poisson bracket with the gauge generator G. That

should suffice for electromagnetism; the field strength Fµν is thus observable. One has

{Fµν(t, x), G} = { ∂

∂xµ
Aν(t, x)− ∂

∂xν
Aµ(t, x),

∫

d3y − pσ(y)
∂ε

∂yσ
} =

∫

d3y(− ∂

∂xµ
δσ
ν ∂σε(t, y) +

∂

∂xν
δσ
µ∂σε(t, y) = −∂µ∂νε(t, x) + ∂ν∂µε(t, x) ≡ 0. (24)

Thus the electric and magnetic fields are observable by the appropriate criterion, which

uses the gauge generator G rather than any first-class constraint in isolation. For Yang-

Mills fields, matters should be more complicated, but still equivalent to the Lagrangian

result (where F i
µν is gauge-dependent and hence not observable [35]).

14 Conclusion

Carefully doing Hamiltonian calculations for electromagnetism, as an end in itself,

would be using a sledgehammer to crack a peanut. But the pattern of ensuring that

the Hamiltonian formalism matches the Lagrangian one, which is perspicuous and

correct, will prove very illuminating for the analogous treatment of GR. There the

right answers are generally not evident by inspection, and the calculations are difficult

and error-prone. Knowing what a properly dotted “i” and a properly crossed “t” look

like will be crucial in GR, where various attractive entrenched errors related to the

first-class-constraint-generates-a-gauge-transformation theme need to be diagnosed. In

particular, one should use the total Hamiltonian and its associated gauge generator G,

not the extended Hamiltonian and each first-class constraint smeared separately. While

various people have made such advocacy before, it would seem that the calculation of

the gauge dependence of the electric field and the spoilage of Gauss’s law achieve a

new level of rational compulsion for the Lagrangian-equivalent total Hamiltonian and

G.

One example of an entrenched error in canonical GR is the common claim that

Hi generates a spatial coordinate transformation. While of course Hi does have the

appropriate Poisson brackets with the spatial metric and its conjugate momentum to
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generate a spatial coordinate transformation as far as those fields are concerned [35],

the falsehood of the statement in classical GR is evident from the Poisson bracket with

the shift vector βj and the lapse function N . The immediate results

{Hi(x), β
j(y)} = 0,

{Hi(x), N (y)} = 0 (25)

do not give even the Lie derivative of a scalar like the lapse N , much less that of

a vector like βi. One can treat Hi as generating a coordinate transformation on a

single initial data surface (much as one can keep ~E from changing due to pi,i if one

uses only a time-independent smearing function). But failure to transform the lapse

and shift destroys the information that allows the aspiring initial data surface to be

embedded consistently into space-time; the aspiring initial data surface instead is just

a lonely moment. To recover the usual electromagnetic gauge transformations and GR

coordinate transformations, one instead needs the gauge generator to pick out gauge

transformations in the Hamiltonian context [20]; G transforms the scalar potential (or

lapse and shift) appropriately as well. Taking seriously the gauge generator G, not

first class constraints in isolation, as generating gauge transformations will remove the

still common expectation [10] that observables should have vanishing Poisson brackets

with first class constraints. There might be some clarification achieved for canonical

quantization.

15 Appendix: Application to GR

As in electromagnetism, taking a first-class constraint as (by itself) generating a gauge

transformation leads to trouble in GR. The momentum constraint in the Lagrangian

context is DiKij − DjK = 0, the time-space part of Einstein’s equations, where the

extrinsic curvature tensor Kij tells how space bends relative to space-time. Kij is

defined in terms of the spatial metric gij and the lapse N and shift βi and some time

and space derivatives thereof: Kij = 1
2N

(ġij−Diβj−Djβi). The lapseN relates physical

time to coordinate time, while the shift vector βi tells how spatial coordinates move

over time. The time-time part of Einstein’s equations (without sources) is KijK
ij −

(Ki
i)

2 − R = 0. The primary constraints p0 =df
∂L

∂N,0
= 0 and pi =df

∂L
∂N,i

= 0, after

the transition to the Hamiltonian formalism, are first-class.

p0 varies N ; pi varies βi. Do they generate gauge transformations? Varying N

arbitrarily, or βi, or both, typically spoils the constraints in Lagrangian form, just as
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in electromagnetism. For example, pi varies βi, which in the momentum constraint

DiKij −DjK = 0 introduces new terms

(−Di 1

2N
)(Diδβj +Djδβi)−

1

2N
(DiDiδβj +DiDjδβi)+(DjN

−1)Diδβi+N
−1DjD

iδβi,

which typically fail to vanish. (Again one notices a Laplacian-type piece.) Likewise

with varying N in the momentum constraint or N or βi in the Hamiltonian constraint.

Thus the Gauss-Codazzi relations embedding space into space-time fail if one mistakes

first-class constraints pi or p0 for generators of gauge transformations.

The constraints H0 and Hi in terms of πij don’t notice trouble—they don’t even

see p0 or pi because they are independent of N and βi. But that fact simply shows that

the constraints in Hamiltonian (q − p) form cease to be equivalent to the Lagrangian

constraints (q − q̇ form). The constraints in Lagrangian form, in terms of Kij rather

than πij, are those with direct physical significance. This error would be obvious if

it were common to move from the verbal formula “a first-class constraint generates a

gauge transformation” to mathematics; but in fact only the move from mathematics

to the verbal formula is generally made. Practical people (like numerical relativists)

have no problem, because they’d likely not use first-class constraint transformations

instead of coordinate transformations. Thus conceptual confusion is generated without

immediate mathematical or empirical difficulty.

15.1 What Do Hi and H0 Generate?

One often reads that Hi generates spatial coordinate transformations. Given the elec-

tromagnetic precedent above, one is prepared to disbelieve that claim. Given the

distinction between H and G [20], it is clear that H0 can help either in H to generate

time evolution or in G to generate a change of time coordinate. Does H0 generate some

combination of time evolution and change of time coordinate? Apparently not; H0 has

a well defined mathematical action with no obvious interesting physical meaning in

isolation. One can find the relation between H0 and space-time coordinate transfor-

mations by starting with the gauge generator G and throwing away some terms to

isolate H0. The gauge generator G has a bunch of terms involving the primary con-

straints, the lapse and shift, and (in some cases) the spatial 3-metric [20]; these will not

affect the 3-metric gij. Thus {gij(x), G} = {gij(x),
∫

d3y[ε⊥(y)H0(y)+ εi(y)Hi(y)]}. ε⊥
is the normal projection of the 4-vector ξµ describing an infinitesimal coordinate trans-

formation, while εi is the spatial projection. Thus one has ε⊥ = Nξ0 and εi = ξi +βiξ0.
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Setting εi = 0 to make a purely normal coordinate transformation, one has

{gij(x),

∫

d3yε⊥(y)H0(y)} = δµ
i δ

ν
j £(ε⊥nα)gµν(x).

While that looks like 6
10 of the desired space-time Lie derivative formula, the obvious

results {N (x),
∫

d3yε⊥(y)H0(y)} = 0 and {βi(x),
∫

d3yε⊥(y)H0(y)} = 0 show that the

rest of the Lie derivative formula is violated. Thus H0 does not generate a coordinate

transformation.

Likewise Hi can generate part of a spatial coordinate transformation or part of a

spatial translation. One can readily see from the Poisson brackets that Hi does not

generate a coordinate transformation. While the Poisson brackets

{gij(x),

∫

d3yεi(y)Hi(y)} = £ξgij(x),

{πij(x),

∫

d3yεi(y)Hi(y)} = £ξπ
ij(x) (26)

are appropriate for a coordinate transformation, the brackets

{βi(x),

∫

d3yεi(y)Hi(y)} = 0,

{N (x),

∫

d3yεi(y)Hi(y)} = 0 (27)

are not appropriate for a coordinate transformation—not even a spatial coordinate

transformation. They aren’t appropriate for a spatial translation, either. Neither does

it seem to be possible to regard the transformation as a combination of a coordinate

transformation and a translation. By itself Hi simply generates variations in the spatial

metric gij, its conjugate momentum πij, and functionals thereof, variations with a

spatial Lie derivative form. The world is thereby changed, but not in a way with any

special physical meaning. In fact there seems to be no sensible physical meaning for

the transformation in isolation; by itself it is simply a bad change, in that if one starts

with a physically allowed situation, a change is made to an impermissible one.

It long was easy to neglect 4-dimensional coordinate transformations because a

usable gauge generator was unavailable after the 3 + 1 innovation in 1958 [23, 24]

rendered the original G [1] obsolete. The 3 + 1 G finally appeared in 1982 [20]. The

fact that GR lacks hidden symmetries [59] implies that each first-class constraint cannot

generate a gauge transformation. There being only 4 coordinate transformations and

no other symmetries, the 8 first-class constraints can contribute only in combination(s).
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If a first-class constraint generated a gauge transformation, then the gauge generator

G would be an arbitrary sum of first-class constraints, not a carefully combined sum

with twice as many constraints as arbitrary functions (as it in fact is).

It being demonstrated that the first-class secondary constraints H0 and Hi do not

generate gauge transformations, the question arises what they do generate. Given

the electromagnetic precedent of the violation of Gauss’s law above, one expects that

they spoil the Lagrangian constraints, 4
10 of Einstein’s equations, the Gauss-Codazzi

relations describing how space fits into space-time. Let us calculate to find out.

For starters, one can see what the primary constraints do. This is easy, because

they only change the lapse and shift, which appear with no time derivatives. Thus one

not does not have to figure out what to do with velocities in the extrinsic curvature

tensor Kij. For p (conjugate to the lapse N ), one has

{
∫

d3yε(y)p(y), Di(K
i
j − δi

jK)(x)} = Di[(K
i
j − δi

jK)εN−1] 6= 0, (28)

even if one uses Di(K
i
j − δi

jK) = 0. So here is one primary first-class constraint that

spoils a Lagrangian constraint and thus makes a bad physical change.

What does p do to the q − q̇ Hamiltonian constraint, the normal-normal part of

Einstein’s equations? To answer that question, it is convenient to define a lapse-less

factor in the extrinsic curvature tensor: Lij =df NKij = 1
2(ġij −Diβj −Djβi). Thus

{
∫

d3yε(y)p(y), KijKij −Ki
iK

j
j −R(x)} =

∫

d3yε(y){p(y), N−2(x)(LijLij − L2(x))}

= 2ε(x)N−1(KijKij −K2) 6= 0.(29)

Thus p spoils all 4 of the constraints in Einstein’s equations. That is no surprise:

changing the lapse arbitrarily while not changing the shift vector or the spatial metric

has no chance of being a coordinate transformation, the only symmetry that Einstein’s

equations have.

What does pi do to the q − q̇ momentum constraint?

{
∫

d3yεi(y)pi(y), Dl(K
l
j − δl

j)(x)} = Di(
1

2N
Djε

i) +Di(
1

2N
Diεj) −Dj(N

−1Diε
i) 6= 0.

Thus pi spoils some Einstein equations also—not a surprise from so blunt a tool,

which changes the shift vector arbitrarily while leaving everything else alone.

Finally, what does pi do to the q − q̇ Hamiltonian constraint?

{
∫

d3yεl(y)pl(y), K
ijKij −K2 − R(x)} = (Djε

i)
2

N
(Kj

i − δj
iK)(x) 6= 0.
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Yet again, a first-class primary constraint spoils a Lagrangian constraint, rendering

Einstein’s equations false (assuming that one still regards the altered N as the lapse).

For electromagnetism and GR, the fraction of primary constraints that generate

gauge transformations is 0
5 , whereas the fraction that generates a bad physical change,

violating the field equations, is 5
5 . This isn’t a good record for the conventional wisdom.

What do the secondary constraints Hi and H0 generate? Given the conventional

wisdom and the ‘proofs’ of the Dirac conjecture, one might expect them to generate

gauge transformations; but that claim has been falsified above for electromagnetism

by direct calculation. Given the example of electromagnetism above, one expects that

Hi and H0 also spoil the Lagrangian constraints in Einstein’s equations. Qualitatively

speaking, this is because Hi and H0 change the 3-metric while leaving the lapse and

shift alone, a transformation that isn’t a coordinate transformation, the only available

symmetry.

One momentary difficulty is what to do with the 3-metric’s velocities in the extrinsic

curvature tensor Kij. The answer is that the changes in the velocities arise from time-

differentiating the 3-metric, the change of which comes from the Poisson bracket. Above

I simply used the Poisson bracket to find in electromagnetism what pi,i did to Aµ,

and then calculated Fµν by differentiation of Aµ. Such direct calculation requires no

“definitions” (apart from the uncontroversial definition of the electromagnetic field

strength) or “insights”, the reliance on which, in place of testing on well-understood

examples, too often has generated confusion in constrained dynamics. Thus to find

what happens to the extrinsic curvature tensor, one only has to find what happens

to the 3-metric (mildly nontrivial), the lapse (nothing), and the shift (nothing), and

then use the definition of Kij. Nothing can go wrong (except for performance errors

in doing the calculation, which can be corrected by further calculations). By contrast,

definitions and insights are not reliably self-correcting and hence are methodologically

inferior to calculations for understanding first-class constraints.

It is straightforward to infer the change in Kij from the variation of the 3-metric

due to Hi, though one has to take both time and space derivatives. One gets

δKij =
1

2N

∂

∂t
£εgij −

1

2N
[(£εglj)Diβ

l + (£εgil)Djβ
l + βmDm£εgij].

This expression can also be written as

δKij =
1

2N

∂

∂t
£εgij −

1

2N
[gljβ

m£εΓ
l
im + gilβ

m£εΓ
l
jm + (Diβ

l)£εglj + (Djβ
l)£εgli].

By the same procedure, one finds the variation δDi(K
i
j − δi

jK), taking care to find

dependence on the 3-metric in the connection from Di, the index raising of Kij to
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Ki
j, and the index lowering of βi to βi. There are enough terms that resemble a spa-

tial coordinate transformation that one can split the transformation into a coordinate

transformation and a correction term, the reduced change �δKij = δKij − £εKij. The

change comes out to be δDi(K
i
j − δi

jK) = £εDi(K
i
j − δi

jK) +Di(h
il�δKlj − δi

jh
ab�δKab).

While one would not find the Lie derivative term worrisome, the terms involving �δKij

threaten to spoil the q − q̇ momentum constraint.

While the exact expression is a bit complicated, one can learn much about it and

compare to electromagnetism by taking a special case, the 0th order approximation,

namely, flat space-time in Cartesian coordinates: gµν = diag(−1, 1, 1, 1), N = 1, βi =

0, gij = δij. Then one has

δDi(K
i
j − δi

jK) = £ε0 + ∂i(δ
il
�δKlj − δi

jδ
ab

�δKab).

The reduced change in the extrinsic curvature tensor, in turn, is

�δKij =
1

2
(ε̇i,j +ε̇j ,i ).

Thus the variation in the q − q̇ momentum constraint is

1

2
(∂i∂iε̇j − ∂j∂iε̇i 6= 0).

Once again a first-class constraint generates a bad physical change, spoiling part of

Einstein’s equations. Both the expression and the violation of a physically significant

physical law are analogous to the electromagnetic expressions above.

Thus far I have derived the variation in the q − q̇ momentum constraint simply

using the variation in the 3-metric due to Hi and the definitions of the extrinsic cur-

vature tensor and the q− q̇ momentum constraint; there has been no talk of a Poisson

bracket involving velocities. But given that changes in the derivatives of the 3-metric

induced by Poisson bracket with Hi are, well, induced by Poisson bracket with Hi, it

is reasonable to stipulate that {∂gij

∂t
, G} =df

∂
∂t
{gij(x), G} for the gauge generator of

spatial coordinate transformations. This is an instance of Anderson and Bergmann’s

expression (7.6), though theirs is intended more generally. Given the connection be-

tween G and Lie differentiation, this feature, which resembles the commutativity of Lie

and partial differentiation [60], is welcome. There is now no difficulty in understand-

ing expressions such as {
∫

d3yDl(K
l
j − δl

jK)(x), εi(y)Hi(y)}. One also gets by Poisson

bracket {Kij(x),
∫

d3yεk(y)Hk(y)} = δKij as given above. Thus one has

{
∫

d3yDl(K
l
j − δl

jK)(x), εi(y)Hi(y)} = £εDi(K
i
j − δi

jK) +Di(h
il
�δKlj − δi

jh
ab

�δKab).(30)
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One is now in a position to see what the spatial gauge generator G[εi, ε̇i] does to

the q− q̇ momentum constraint Di(K
i
j−δi

jK)(x). While the general result is somewhat

complicated at least prima facie, a 0th order approximation is illuminating. Assuming

that one has started with flat space-time in Cartesian coordinates, the simplest case

(N = 1, βi = 0, gij = δij, and their derivatives vanish), it follows that only pi and

Hi make surviving contributions. It is immediately evident that, in this simplest of

cases, those two contributions do in fact cancel—apart from the Lie derivative term

(which itself vanishes in this case because one is starting in flat space-time in Cartesian

coordinates and taking the Lie derivative of a vanishing 3-vector).

The difference between the GR and electromagnetic cases involving a leftover Lie

derivative term indicates that, at the level of components, one should seek only co-

variance for external symmetries, whereas one has invariance for internal gauge sym-

metries. That is good enough; one can express external coordinate transformations

by pointing at the world, but one cannot express internal gauge transformations at

all, except verbally/mathematically. Clearly observable features of the world must

be invariant under our merely verbal/mathematical redescriptions. This distinction

(covariance for external symmetries, invariance for internal symmetries) is relevant

to properly sorting out Bergmann’s concept of observables. Bergmann imported his

criterion of vanishing Poisson brackets of observables with symmetry generators from

electromagnetism to GR simply by analogy, without reflection on the different types

of symmetries involved. One would expect {
∫

d3yDl(K
l
j − δl

jK)(x), G[εi, ε̇i]} to vanish

exactly (beyond 0th order, where it has been shown already that everything properly),

apart from a spatial coordinate transformation, a Lie derivative term.

There are several remaining Poisson brackets between the secondary constraints

and the Lagrangian constraints: {
∫

d3yε(y)H0(y), Dl(K
l
j − δl

jK)(x)} (which has been

completed), {
∫

d3yεk(y)Hk(y), KijK
ij −K2 − R(x)} (which has been completed and

cross-checked and is given below), and {
∫

d3yεH0(y), KijK
ij − K2 − R(x)} (which

has been completed). Given what has appeared for electromagnetism and what has

been found so far for GR, one predicts these Poisson brackets will all be nonzero:

the secondary first-class constraints will spoil the physically relevant q− q̇ constraints,

making 40% of Einstein’s equations false if they were true initially. Hence the secondary

first-class constraints will all generate bad physical changes, not gauge transformations.

The long expressions (not shown here) tend to bear out that expectation.

One now has all the Poisson brackets needed to calculate {G[εk, ε̇k], KijK
ij −K2 −

R(x)} (which makes a spatial coordinate transformation and so should leave just a Lie

derivative term), {G[ε⊥, ε̇⊥], Dl(K
l
j−δl

jK)(x)} (which gives a piece of a time coordinate
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transformation using the equations of motion), and {G[ε⊥, ε̇⊥], KijK
ij − K2 − R(x)}

(which gives a piece of a time coordinate transformation using the equations of motion).

The calculation {G[εk, ε̇k], KijK
ij −K2−R(x)} has been explicitly carried out exactly

and indeed leaves just the expected spatial Lie derivative term. To carry it out, one

needs the Poisson bracket

{
∫

d3yεkHk(y), KijK
ij −K2 − R(x)} = −£ε(K

abKab −K2 −R) − Kij − hijK

N
£ε̇hij

−2
KijKij −K2

N
£εN − 2

Kij − hijK

N
£εDiβj +

2

N
(Kij − hijK)(Diβ

l)£εhjl

+
2

N
(Ki

l −Kδi
l )β

m£εΓ
l
im.(31)

This expression certainly does not look like 0 or even a spatial Lie derivative; once

again a (secondary) first-class constraint makes a bad physical change in isolation, not

a gauge transformation.

The calculation of {G[εk, ε̇k], KijK
ij − K2 − R(x)} is moderately long and also

interesting. It involves Poisson brackets with a suitably tuned and smeared sum of Hi,

pi and even p. The gauge generator for spatial coordinate transformations, dropping a

divergence for conceptual clarity, is [20]

G[εk, ε̇k] =

∫

d3y[εk(y)Hk + (£εβ
k + ε̇k)pk +N,k ε

kp]. (32)

Some highlights of the calculation include a contribution from the Poisson bracket of

ḣab in the extrinsic curvature tensor Kab, the Lie derivative of the Christoffel symbols,

cancellation of ε̇i terms generated by different constraints, cancellation of all the many

terms of the form (D~β)(D~ε) (where D is the spatial covariant derivative), cancellation

of all but the antisymmetric parts of the second covariant derivatives in terms of the

form βD2ε and in terms of the form εD2β, and cancellation of the two resulting spatial

Riemann tensor terms. (If one thought that the Poisson bracket of a velocity could not

be evaluated, but this ambiguity is harmless because the result is always multiplied by

0 [61], one would be stumped. If one thought that such a Poisson bracket were merely

0, then one would not get the correct answer.) Thus one gets the predicted result

{G[εk, ε̇k], KijK
ij −K2 − R(x)} = −£ε(KijK

ij −K2 −R(x)). (33)

Roughly speaking, Hi makes what looks almost like a coordinate transformation on the

the 3-metric hij and its canonical momentum—hence the attraction of the widespread

belief that Hi itself generates a spatial coordinate transformation—while failing to

change the lapse and shift. The primary constraint terms in G fill in the gaps.
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One potential cause of mistakes is a peculiarity of the Anderson-Bergmann Poisson

bracket of a velocity. They say that such a quantity occasionally is necessary [1],

though frequently it is multiplied by 0 and so in many cases is not needed. One finds

that their formula {ẏA, F} = ∂F
∂t

, which is desirable to make gauge transformations

and time differentiation commute as they do in the Lagrangian formalism, has the

quirk that {ẏA, EF} 6= E{ẏA, F} + {ẏA, E}F = E ∂
∂t
{yA, F} + F ∂

∂t
{yA, E}, which

tends to vanish because basic Poisson brackets tend to be 0 or ‘1.’ Instead one has

{ẏA, EF} = ∂
∂t{yA, EF} = ∂

∂tE({yA, F} + F{yA, E}) = E ∂
∂t{yA, F} + {yA, F}∂E

∂t +

F ∂
∂t{yA, E}+ ∂F

∂t {yA, E}. When faced with a Poisson bracket of a velocity, one should

evaluate it sooner rather than later. A systematic justification for such results would

be desirable, and might be available in a histories-based formalism if not elsewhere.

One notices that the usual effort to formulate GR in phase space seems more or less

doomed from the start, simply because phase space is modeled on space, not space-

time. Theories with velocity-dependent gauge transformations (including GR) and

relative simultaneity are more naturally written in, e.g., phase space cross time. The

usual idea of “reduced phase space” is also problematic, in that simultaneity-changing

changes of time coordinate cannot be divided out of phase space because they were

never present in phase space originally. One has to evolve (perhaps forward in some

places and backward in others) to get to a different simultaneity hypersurface.
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