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Reduction and Quantum Gravity

¢ A successful theory of quantum gravity ought to account
for the success of the theories it supplants.

e Philosophically, the role of intertheoretic reduction in this
context has received little attention.

¢ No program has yet accomplished this reductive goal, so
analysis must be tentative.
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Test Case: Causal Set Theory

e lts structure is in many ways logically simple.

e The relationship with relativity has played a central in its
research program.

e In fact, its hauptvermutung, or central conjecture, concerns
this relationship.
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e Setting the Stage

¢ Motivation: Malament (1977)

e Causal Set Kinematics

e The Heuristic Hauptvermutung
e The Problems Enter

e Uniform Embedding

e Coarse-Graining

e Spacetime Similarity

e 3 Approaches

e Dénouement on Reduction



Chronological Future and Past

I(a)
T'(p)
p

If r € I (q) one writes r < q.

DA
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Distinguishing Spacetimes

e A spacetime (M, gap) is future -distinguishing when for
every p,q € M, I*(p) = I (q) implies p = q.

e A spacetime (M, gab) is past-distinguishing when for every
p,q € M, I"(p) = I"(q) implies p = q.

e A spacetime is distinguishing when it is both future- and
past-distinguishing.



Malament’s Theorem

Theorem

Two distinguishing spacetimes, (M, gap) and (M, g.,), must be
conformally isometric if there a causal isomorphism

f:M— M. (lLe., iff and f~' preserve the relation <, then
there is a diffeomorphism ) : M — M’ such that y*g,,, = 0?9
for some positive scalar field Q. )?

2“The class of continuous timelike curves determines the topology of
space-time,” Journal of Mathematical Physics 18 (1977): 1399—-1404.
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Interpreting Malament’s Theorem

One can reconstruct a distinguishing spacetime up to a
conformal factor by its causal relations alone.

The conformal factor is related to the spacetime metric’s
volume element.

If spacetime were composed of discrete (four-)volume
chunks, one could determine volume as well by counting.

Hence Sorkin’s slogan: "Order + Number = Geometry"
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Causal Set Kinematics

A causal setC is an ordered pair (C, <), with a set C and a
relation < defined on C such that:

© (Reflexivity) foreach ae C,a < a;

® (Antisymmetry) for all a,b € C, if a< band b < a, then
a=b;

© (Transitivity) for all a,b,c € C,if a=< band b < ¢, then
a=c;and

O (Local Finiteness) for all a, b € C, the set
{ce C:a=c=b}isfinite.



(Almost a) Hasse Diagram

| limit attention to complete causal set histories (or "block
universe" causets), which are in some respects "classical"

objects.®

3Image from p. 230 of Christian Wiithrich, “The Structure of Causal Sets,
Journal for General Philosophy of Science 43 (2012): 223-241.
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The Intuition Behind the
Hauptvermutung

e Intuitive idea: if one "samples" enough points with their
causal relations from a spacetime, one should be able to
recover "most" of the geometry.

e But the causal set is supposed to be more fundamental.

e Thus, inverted: if a causal set is such that it could have
been "sampled" from a spacetime, then that spacetime is
"essentially" unique.
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Faithful Embeddings

Given a causal set (C, <) and a relativistic spacetime (M, gap),
an injection ¢ : C — M is a faithful embedding with density p
when:

© ¢ preserves causal relations, i.e., forall a,b € C, a < biff
¢(a) < ¢(b); and

® the image ¢[C] is mapped "uniformly" into M at density p
with respect to the volume measure arising from gap.



The Hauptvermutung

Hauptvermutung If ¢, ¢’ are faithful embeddings of the causal
set C into relativistic spacetimes (M, gap), (M, g.p)
with density p, then (M, gap) and (M, g7, ) are
"approximately isometric above the volume scale

p—1l|.
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What does it mean for an embedding
to be "uniform"?

e Uniformity w.r.t. the volume determined by the metric.

e |tis usually argued on grounds of local Lorentz invariance
that this must mean uniform on average.

(pVR)"e *Vr

P(n,R) = pe

e If the causal sets are more fundamental, then uniformity
must be determined by statistical inference: the
embedding could have arisen "with high probability".
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What does "with high probability"
mean?

e Passes a (sufficiently stringent) Fisherian hypothesis test.

e How stringent? Which test statistics?
e These can be determined by closer connection with
observables.
¢ Uniformity only instrumental for the empirical adequacy of
the continuum approximation.
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Probability and Infinite Structure

The open problem is how to find a viable battery of tests.

Typical tests (e.g., x2) require finite data, hence finite
volume spacetime

Tests based on partitioning into equal (finite) volume cells
not invariant under the choice of partition.

In general, even extremely unlikely patterns will occur
infinitely often in an infinite data set.



Is requiring an embedding too strong?

It is often remarked that requiring the injection ¢ to be an
embedding may be too strong since some small causal sets

cannot be embedded.*

*Image adapted from Christian Wiithrich. “The Structure of Causal Sets;
Journal for General Philosophy of Science 43 (2012): 223-241.
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Coarse-Graining

Intuitively: for each point, delete with probability p.

Thus: a coarse-graining is a causet that could have arisen
with high probability from a Bernoulli deletion

Weaken the hauptvermutung to embeddings of some
coarse-grained causal set

Same statistical issues arise again for coarse-grainings
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Conceptual Issues

e Should a coarse-graining be a kind of averaging? Not clear
that deletion can be understood as such.

e Another option: Bernoulli vertex identification on adjacent
points (suitably defined)

e However, determining if a causal set arises through such a
process is much more complicated
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Restrictions on Embedding Density

« If the elementary volume is p—', then a coarse-graining
with probability p yields a new volume [(1 — p)p] ™"

e Intuition: sufficient decimation makes faithful embedding
trivial

e Maximal coarse-grained volume should be determined by
well-approximation of observables
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What is an "approximate isometry"?

e The original proposal involves two "distances" for causal
and volumetric structure.

e Measuring differences in volume structure is simple:

, ’ det(gab)|p|
dvol(gab; gab) = Sup nY————

peM

| det(glab)lp’

e Causal structure is a bit more involved: use difference in
volume of Alexandrov intervals



Alexandrov Intervals

A(p,q)AA'(p,q)



Measuring Differences in Causal
Structure

vapaatioa) it o < V(A(p,q) UA(p,q)) <

o(p.q: . gly) = { V(AP.q)UA(p,a))’
(P, Q; 9ab, 9ap) {0’ otherwise,

Oeu(9ab: Ghp) = sup (P, G: Gab, Iap)
p.qeM:V(A(p.q)UA’ (p,q))>1P

| is the elementary (Planck) length and /P the elementary
volume.
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Problems with the Proposal

e Too fine: compact non-conformal perturbations of
Minkowski spacetime are at a maximal distance

« Noldus® proposed a correction to solve this problem, but it
introduces a host of other problems

e The whole scheme is restricted to spacetimes defined on
the same manifold.
e Causal set theorists want to capture a notion of
"scale-dependent" topology.

%«A new topology on the space of Lorentzian metrics on a fixed manifold,”
Classical and Quantum Gravity 19 (2002): 6075-6107.
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Bombelli’s Statistical Proposal®

e Sample n points at random from a spacetime and consider
the induced causal structure

e One can write down an expression for P,(C|G), the
probability that drawing n such points from isometry class
G will yield causal set C.

e |dea: compare isometry classes according to P,(C|G) for
all |C| = n, where n is determined by the embedding
density

e E.g.,since > Pn(C|G) = 1, \/Pn(C|G) can be interpreted
as coordinates on a high-dimensional sphere

5“Statistical Lorentzian geometry and the closeness of Lorentzian
manifolds,” Journal of Mathematical Physics 41.10 (2000): 6944—6958:
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Problems with the Statistical Proposal

e Many inequivalent ways to encode differences in the
Pn(C|G) with a distance function
e Less of a problem if relevant distances are determined by
approximation of observables

e Very difficult to calculate for large n
¢ Only works for spacetimes of finite volume



Hausdorff Distance

sup inf d(x,y)

zeX YEY

sup 1nf d(z,y)
yeYy TeX

dy(X,Y) = max{sup inf d(x y), sup |nf d(x y)}

xeX YeY
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Gromov-Hausdorff Distance

e The Gromov-Hausdorff distance dgy(X, Y) is the infimum
of dy(f[X], f[Y]) for all isometric embeddings f : X — Z
and f' : Y — Z be isometric embeddings

¢ Riemannian manifolds are metric spaces vis-a-vis
geodesic distance

e But how can this be extended to Lorentzian manifolds?
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Lorentz Spaces

e A Lorentz distance is a function d : M — [0, oc] satisfying
@ d(x,x)=0forall x € M;
® if d(x,y) > 0, then d(y, x) = 0 forall x,y € M; and
@ if d(x,y)d(y,z) > 0, then d(x, z) > d(x, y) + d(y, z) for all
X,y,Z€ M.
o Each time-oriented relativistic spacetime (M, gz4) has a
Lorentz distance d defined by future-directed timelike
geodesic distance.



A Lorentzian Gromov-Hausdorff
Distance

e Say that (M, ga») = (M', g,,) When there are maps
v :M— M and v’ : M — M such that




A Lorentzian Gromov-Hausdorff
Distance

e Say that (M, ga») = (M', g,,) When there are maps
v :M— M and v’ : M — M such that

O |dy (v(p1),v(p2)) — dg(p1, P2)| < € for all py, p. € M, and




A Lorentzian Gromov-Hausdorff
Distance

e Say that (M, ga») = (M', g,,) When there are maps
v :M— M and v’ : M — M such that

@ (dy (¥(p1). ¥(p2)) — dg(p1. p2)| < e for all py, p2 € M, and
@ [dg(¥'(p1), ' (p2)) — dy(p1, p2)| < € forall py,po € M'.




A Lorentzian Gromov-Hausdorff
Distance

e Say that (M, ga») = (M', g,,) When there are maps
v :M— M and v’ : M — M such that

@ |dy (v(p1),¥(p2)) — dg(p1, P2)| < € forall py, p» € M, and
@ [y (V' (p1), ¥'(p2)) — dg (P1. p2)| < eforall py, po € M".

« Noldus’ then proposed

dar((M, gab), (M', g2p)) = inf{e > 0 : (M, gap) ~e (M', gp)}

7“A Lorentzian Gromov-Hausdorff notion of distance,” Classical and
Quantum Gravity 21 (2004): 839-850.
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A New Hope?

e The relationship with observables has not been worked out
in much detail.

e One version is restricted to compact globally hyperbolic
spacetimes.

o Another (recent!®) version permits distinguishing
spacetimes under some technical conditions whose
interpretation is not clear.

¢ |f one can make causal sets into Lorentz spaces, then one
could compare causal sets and spacetimes directly without
the intermediary of a faithful embedding.

8Bombelli, Luca, Johan Noldus, and Julio Tafoya. “Lorentzian Manifolds
and Causal Sets as Partially Ordered Measure Spaces,” preprint LPT-Orsay
12-32, arxiv:1212.0601v1.
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Reduction without Derivation?

Many obstacles and forks in the road ahead.

Some problems could be mollified by closer attention to
approximation of observables.

The hauptvermutung does not seem to envision a
derivation of general relativity from causal set theory.
Yet its fulfillment would seem to provide some kind of
explanation for success of continuum spacetime.
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