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Theses about the Hauptvermutung:

1 It describes the nature of causal set theory’s (hoped for)
reduction to general relativity.

2 It has yet no precise statement.
• Cf. Earman1 on cosmic censorship.

3 Further attention to observables may help clarify it.
4 If a precise version is true, it would be an instance of

non-Nagelian reduction.
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Chronological Future and Past

If r ∈ I−(q) one writes r � q.



Distinguishing Spacetimes

• A spacetime (M,gab) is future-distinguishing when for
every p,q ∈ M, I+(p) = I+(q) implies p = q.

• A spacetime (M,gab) is past-distinguishing when for every
p,q ∈ M, I−(p) = I−(q) implies p = q.

• A spacetime is distinguishing when it is both future- and
past-distinguishing.
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Malament’s Theorem

Theorem
Two distinguishing spacetimes, (M,gab) and (M ′,g′ab), must be
conformally isometric if there a causal isomorphism
f : M → M ′. (I.e., if f and f−1 preserve the relation�, then
there is a diffeomorphism ψ : M → M ′ such that ψ∗g′ab = Ω2gab
for some positive scalar field Ω.)2

2“The class of continuous timelike curves determines the topology of
space-time,” Journal of Mathematical Physics 18 (1977): 1399–1404.



Interpreting Malament’s Theorem

• One can reconstruct a distinguishing spacetime up to a
conformal factor by its causal relations alone.

• The conformal factor is related to the spacetime metric’s
volume element.

• If spacetime were composed of discrete (four-)volume
chunks, one could determine volume as well by counting.

• Hence Sorkin’s slogan: "Order + Number = Geometry"
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Causal Set Kinematics

A causal set C is an ordered pair (C,�), with a set C and a
relation � defined on C such that:

1 (Reflexivity) for each a ∈ C,a � a;
2 (Antisymmetry) for all a,b ∈ C, if a � b and b � a, then

a = b;
3 (Transitivity) for all a,b, c ∈ C, if a � b and b � c, then

a � c; and
4 (Local Finiteness) for all a,b ∈ C, the set
{c ∈ C : a � c � b} is finite.
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(Almost a) Hasse Diagram

I limit attention to complete causal set histories (or "block
universe" causets), which are in some respects "classical"
objects.3

3Image from p. 230 of Christian Wüthrich, “The Structure of Causal Sets,”
Journal for General Philosophy of Science 43 (2012): 223–241.



The Intuition Behind the
Hauptvermutung

• Intuitive idea: if one "samples" enough points with their
causal relations from a spacetime, one should be able to
recover "most" of the geometry.

• But the causal set is supposed to be more fundamental.
• Thus, inverted: if a causal set is such that it could have

been "sampled" from a spacetime, then that spacetime is
"essentially" unique.
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Faithful Embeddings

Given a causal set (C,�) and a relativistic spacetime (M,gab),
an injection φ : C → M is a faithful embedding with density ρ
when:

1 φ preserves causal relations, i.e., for all a,b ∈ C, a � b iff
φ(a)� φ(b); and

2 the image φ[C] is mapped "uniformly" into M at density ρ
with respect to the volume measure arising from gab.
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The Hauptvermutung

Hauptvermutung If φ, φ′ are faithful embeddings of the causal
set C into relativistic spacetimes (M,gab), (M ′,g′ab)
with density ρ, then (M,gab) and (M ′,g′ab) are
"approximately isometric above the volume scale
ρ−1".



What does it mean for an embedding
to be "uniform"?

• Uniformity w.r.t. the volume determined by the metric.
• It is usually argued on grounds of local Lorentz invariance

that this must mean uniform on average.

P(n,R) =
(ρVR)ne−ρVR

n!

• If the causal sets are more fundamental, then uniformity
must be determined by statistical inference: the
embedding could have arisen "with high probability".
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What does "with high probability"
mean?

• Passes a (sufficiently stringent) Fisherian hypothesis test.
• How stringent? Which test statistics?
• These can be determined by closer connection with

observables.
• Uniformity only instrumental for the empirical adequacy of

the continuum approximation.
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• The open problem is how to find a viable battery of tests.
• Typical tests (e.g., χ2) require finite data, hence finite

volume spacetime
• Tests based on partitioning into equal (finite) volume cells

not invariant under the choice of partition.
• In general, even extremely unlikely patterns will occur

infinitely often in an infinite data set.
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Is requiring an embedding too strong?

It is often remarked that requiring the injection φ to be an
embedding may be too strong since some small causal sets
cannot be embedded.4

4Image adapted from Christian Wüthrich. “The Structure of Causal Sets,”
Journal for General Philosophy of Science 43 (2012): 223–241.



Coarse-Graining

• Intuitively: for each point, delete with probability p.
• Thus: a coarse-graining is a causet that could have arisen

with high probability from a Bernoulli deletion
• Weaken the hauptvermutung to embeddings of some

coarse-grained causal set
• Same statistical issues arise again for coarse-grainings
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Conceptual Issues

• Should a coarse-graining be a kind of averaging? Not clear
that deletion can be understood as such.

• Another option: Bernoulli vertex identification on adjacent
points (suitably defined)

• However, determining if a causal set arises through such a
process is much more complicated
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Restrictions on Embedding Density

• If the elementary volume is ρ−1, then a coarse-graining
with probability p yields a new volume [(1− p)ρ]−1

• Intuition: sufficient decimation makes faithful embedding
trivial

• Maximal coarse-grained volume should be determined by
well-approximation of observables
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What is an "approximate isometry"?

• The original proposal involves two "distances" for causal
and volumetric structure.

• Measuring differences in volume structure is simple:

dvol(gab,g′ab) = sup
p∈M

∣∣∣∣∣∣ln
√
|det(gab)|p|√
|det(g′ab)|p|

∣∣∣∣∣∣
• Causal structure is a bit more involved: use difference in

volume of Alexandrov intervals
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Alexandrov Intervals



Measuring Differences in Causal
Structure

α(p,q; gab,g′ab) =

{
V (A(p,q)∆A′(p,q))
V (A(p,q)∪A′(p,q)) , if 0 < V (A(p,q) ∪ A′(p,q)) <∞
0, otherwise,

d l
cau(gab,g′ab) = sup

p,q∈M:V (A(p,q)∪A′(p,q))≥lD
α(p,q; gab,g′ab)

l is the elementary (Planck) length and lD the elementary
volume.



Problems with the Proposal

• Too fine: compact non-conformal perturbations of
Minkowski spacetime are at a maximal distance

• Noldus5 proposed a correction to solve this problem, but it
introduces a host of other problems

• The whole scheme is restricted to spacetimes defined on
the same manifold.

• Causal set theorists want to capture a notion of
"scale-dependent" topology.

5“A new topology on the space of Lorentzian metrics on a fixed manifold,”
Classical and Quantum Gravity 19 (2002): 6075–6107.
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Bombelli’s Statistical Proposal6

• Sample n points at random from a spacetime and consider
the induced causal structure

• One can write down an expression for Pn(C|G), the
probability that drawing n such points from isometry class
G will yield causal set C.

• Idea: compare isometry classes according to Pn(C|G) for
all |C| = n, where n is determined by the embedding
density

• E.g., since
∑
C Pn(C|G) = 1,

√
Pn(C|G) can be interpreted

as coordinates on a high-dimensional sphere

6“Statistical Lorentzian geometry and the closeness of Lorentzian
manifolds,” Journal of Mathematical Physics 41.10 (2000): 6944–6958.
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• Many inequivalent ways to encode differences in the
Pn(C|G) with a distance function

• Less of a problem if relevant distances are determined by
approximation of observables

• Very difficult to calculate for large n
• Only works for spacetimes of finite volume
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A Lorentzian Gromov-Hausdorff
Distance

• Say that (M,gab) ≈ε (M ′,g′ab) when there are maps
ψ : M → M ′ and ψ′ : M ′ → M such that

1 |dg′(ψ(p1), ψ(p2))− dg(p1,p2)| < ε for all p1,p2 ∈ M, and
2 |dg(ψ′(p1), ψ′(p2))− dg′(p1,p2)| < ε for all p1,p2 ∈ M ′.

• Noldus7 then proposed

dGH((M,gab), (M ′,g′ab)) = inf{ε > 0 : (M,gab) ≈ε (M ′,g′ab)}

7“A Lorentzian Gromov-Hausdorff notion of distance,” Classical and
Quantum Gravity 21 (2004): 839–850.
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A New Hope?

• The relationship with observables has not been worked out
in much detail.

• One version is restricted to compact globally hyperbolic
spacetimes.

• Another (recent!8) version permits distinguishing
spacetimes under some technical conditions whose
interpretation is not clear.

• If one can make causal sets into Lorentz spaces, then one
could compare causal sets and spacetimes directly without
the intermediary of a faithful embedding.

8Bombelli, Luca, Johan Noldus, and Julio Tafoya. “Lorentzian Manifolds
and Causal Sets as Partially Ordered Measure Spaces,” preprint LPT-Orsay
12-32, arXiv:1212.0601v1.
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Reduction without Derivation?

• Many obstacles and forks in the road ahead.
• Some problems could be mollified by closer attention to

approximation of observables.
• The hauptvermutung does not seem to envision a

derivation of general relativity from causal set theory.
• Yet its fulfillment would seem to provide some kind of

explanation for success of continuum spacetime.
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