

Reduction and Causal Set Theory's *Hauptvermutung*

Samuel C. Fletcher

Department of Logic and Philosophy of Science
University of California, Irvine

Seminar on Philosophical Foundations of Quantum Gravity
UIC, September 27, 2013

Reduction and Quantum Gravity

- A successful theory of quantum gravity ought to account for the success of the theories it supplants.
- Philosophically, the role of intertheoretic reduction in this context has received little attention.
- No program has yet accomplished this reductive goal, so analysis must be tentative.

Reduction and Quantum Gravity

- A successful theory of quantum gravity ought to account for the success of the theories it supplants.
- Philosophically, the role of intertheoretic reduction in this context has received little attention.
- No program has yet accomplished this reductive goal, so analysis must be tentative.

Reduction and Quantum Gravity

- A successful theory of quantum gravity ought to account for the success of the theories it supplants.
- Philosophically, the role of intertheoretic reduction in this context has received little attention.
- No program has yet accomplished this reductive goal, so analysis must be tentative.

Test Case: Causal Set Theory

- Its structure is in many ways logically simple.
- The relationship with relativity has played a central in its research program.
- In fact, its *hauptvermutung*, or central conjecture, concerns this relationship.

Test Case: Causal Set Theory

- Its structure is in many ways logically simple.
- The relationship with relativity has played a central in its research program.
- In fact, its *hauptvermutung*, or central conjecture, concerns this relationship.

Test Case: Causal Set Theory

- Its structure is in many ways logically simple.
- The relationship with relativity has played a central in its research program.
- In fact, its *hauptvermutung*, or central conjecture, concerns this relationship.

Theses about the *Hauptvermutung*:

- ① It describes the nature of causal set theory's (hoped for) reduction to general relativity.
- ② It has yet no precise statement.
 - Cf. Earman¹ on cosmic censorship.
- ③ Further attention to observables may help clarify it.
- ④ If a precise version is true, it would be an instance of non-Nagelian reduction.

Theses about the *Hauptvermutung*:

- ① It describes the nature of causal set theory's (hoped for) reduction to general relativity.
- ② It has yet no precise statement.
 - Cf. Earman¹ on cosmic censorship.
- ③ Further attention to observables may help clarify it.
- ④ If a precise version is true, it would be an instance of non-Nagelian reduction.

Theses about the *Hauptvermutung*:

- ① It describes the nature of causal set theory's (hoped for) reduction to general relativity.
- ② It has yet no precise statement.
 - Cf. Earman¹ on cosmic censorship.
- ③ Further attention to observables may help clarify it.
- ④ If a precise version is true, it would be an instance of non-Nagelian reduction.

¹ Bangs, Crunches, Wimpers, and Shrieks. New York: Oxford UP, 1995.

Theses about the *Hauptvermutung*:

- ① It describes the nature of causal set theory's (hoped for) reduction to general relativity.
- ② It has yet no precise statement.
 - Cf. Earman¹ on cosmic censorship.
- ③ Further attention to observables may help clarify it.
- ④ If a precise version is true, it would be an instance of non-Nagelian reduction.

¹ Bangs, Crunches, Wimpers, and Shrieks. New York: Oxford UP, 1995.

Theses about the *Hauptvermutung*:

- ① It describes the nature of causal set theory's (hoped for) reduction to general relativity.
- ② It has yet no precise statement.
 - Cf. Earman¹ on cosmic censorship.
- ③ Further attention to observables may help clarify it.
- ④ If a precise version is true, it would be an instance of non-Nagelian reduction.

¹ Bangs, Crunches, Wimpers, and Shrieks. New York: Oxford UP, 1995.

Theses about the *Hauptvermutung*:

- 1 It describes the nature of causal set theory's (hoped for) reduction to general relativity.
- 2 **It has yet no precise statement.**
 - Cf. Earman¹ on cosmic censorship.
- 3 **Further attention to observables may help clarify it.**
- 4 If a precise version is true, it would be an instance of non-Nagelian reduction.

¹ Bangs, Crunches, Wimpers, and Shrieks. New York: Oxford UP, 1995.

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
 - 3 Approaches
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
 - 3 Approaches
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
 - 3 Approaches
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
 - 3 Approaches
- Dénouement on Reduction

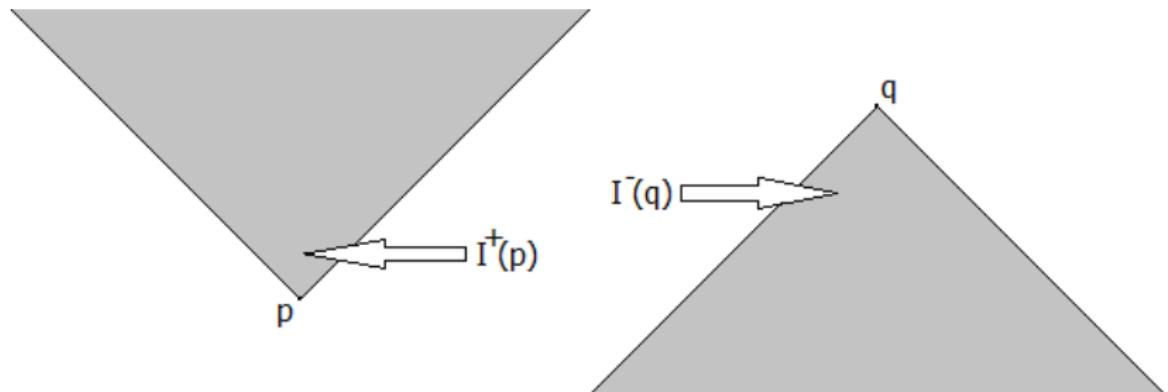
Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
 - 3 Approaches
- Dénouement on Reduction

Outline

- Setting the Stage
 - Motivation: Malament (1977)
 - Causal Set Kinematics
 - The Heuristic *Hauptvermutung*
- The Problems Enter
 - Uniform Embedding
 - Coarse-Graining
 - Spacetime Similarity
 - 3 Approaches
- Dénouement on Reduction

Chronological Future and Past



If $r \in I^-(q)$ one writes $r \ll q$.

Distinguishing Spacetimes

- A spacetime (M, g_{ab}) is *future-distinguishing* when for every $p, q \in M$, $I^+(p) = I^+(q)$ implies $p = q$.
- A spacetime (M, g_{ab}) is *past-distinguishing* when for every $p, q \in M$, $I^-(p) = I^-(q)$ implies $p = q$.
- A spacetime is *distinguishing* when it is both future- and past-distinguishing.

Distinguishing Spacetimes

- A spacetime (M, g_{ab}) is *future-distinguishing* when for every $p, q \in M$, $I^+(p) = I^+(q)$ implies $p = q$.
- A spacetime (M, g_{ab}) is *past-distinguishing* when for every $p, q \in M$, $I^-(p) = I^-(q)$ implies $p = q$.
- A spacetime is *distinguishing* when it is both future- and past-distinguishing.

Distinguishing Spacetimes

- A spacetime (M, g_{ab}) is *future-distinguishing* when for every $p, q \in M$, $I^+(p) = I^+(q)$ implies $p = q$.
- A spacetime (M, g_{ab}) is *past-distinguishing* when for every $p, q \in M$, $I^-(p) = I^-(q)$ implies $p = q$.
- A spacetime is *distinguishing* when it is both future- and past-distinguishing.

Malament's Theorem

Theorem

Two distinguishing spacetimes, (M, g_{ab}) and (M', g'_{ab}) , must be conformally isometric if there is a causal isomorphism

$f : M \rightarrow M'$. (I.e., if f and f^{-1} preserve the relation \ll , then there is a diffeomorphism $\psi : M \rightarrow M'$ such that $\psi^ g'_{ab} = \Omega^2 g_{ab}$ for some positive scalar field Ω .)²*

²“The class of continuous timelike curves determines the topology of space-time,” *Journal of Mathematical Physics* 18 (1977): 1399–1404.

Interpreting Malament's Theorem

- One can reconstruct a distinguishing spacetime up to a conformal factor by its causal relations alone.
- The conformal factor is related to the spacetime metric's volume element.
- If spacetime were composed of discrete (four-)volume chunks, one could determine volume as well by counting.
- Hence Sorkin's slogan: "Order + Number = Geometry"

Interpreting Malament's Theorem

- One can reconstruct a distinguishing spacetime up to a conformal factor by its causal relations alone.
- The conformal factor is related to the spacetime metric's volume element.
- If spacetime were composed of discrete (four-)volume chunks, one could determine volume as well by counting.
- Hence Sorkin's slogan: "Order + Number = Geometry"

Interpreting Malament's Theorem

- One can reconstruct a distinguishing spacetime up to a conformal factor by its causal relations alone.
- The conformal factor is related to the spacetime metric's volume element.
- If spacetime were composed of discrete (four-)volume chunks, one could determine volume as well by counting.
- Hence Sorkin's slogan: "Order + Number = Geometry"

Interpreting Malament's Theorem

- One can reconstruct a distinguishing spacetime up to a conformal factor by its causal relations alone.
- The conformal factor is related to the spacetime metric's volume element.
- If spacetime were composed of discrete (four-)volume chunks, one could determine volume as well by counting.
- Hence Sorkin's slogan: "Order + Number = Geometry"

Causal Set Kinematics

A *causal set* \mathcal{C} is an ordered pair (C, \preceq) , with a set C and a relation \preceq defined on C such that:

- ① *(Reflexivity)* for each $a \in C$, $a \preceq a$;
- ② *(Antisymmetry)* for all $a, b \in C$, if $a \preceq b$ and $b \preceq a$, then $a = b$;
- ③ *(Transitivity)* for all $a, b, c \in C$, if $a \preceq b$ and $b \preceq c$, then $a \preceq c$; and
- ④ *(Local Finiteness)* for all $a, b \in C$, the set $\{c \in C : a \preceq c \preceq b\}$ is finite.

Causal Set Kinematics

A *causal set* \mathcal{C} is an ordered pair (C, \preceq) , with a set C and a relation \preceq defined on C such that:

- ① (*Reflexivity*) for each $a \in C$, $a \preceq a$;
- ② (*Antisymmetry*) for all $a, b \in C$, if $a \preceq b$ and $b \preceq a$, then $a = b$;
- ③ (*Transitivity*) for all $a, b, c \in C$, if $a \preceq b$ and $b \preceq c$, then $a \preceq c$; and
- ④ (*Local Finiteness*) for all $a, b \in C$, the set $\{c \in C : a \preceq c \preceq b\}$ is finite.

Causal Set Kinematics

A *causal set* \mathcal{C} is an ordered pair (C, \preceq) , with a set C and a relation \preceq defined on C such that:

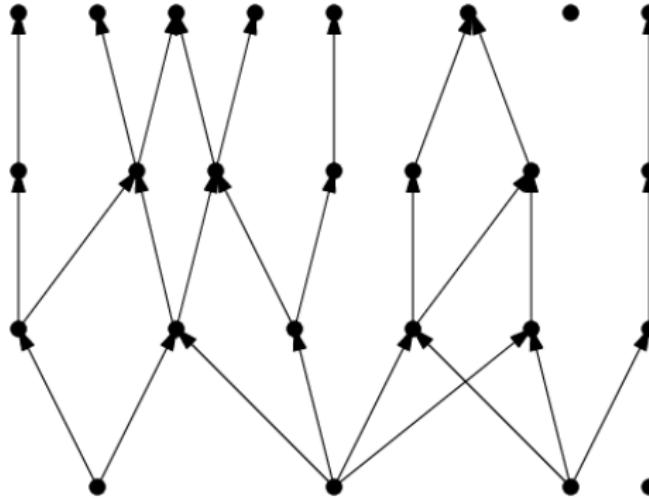
- ① (*Reflexivity*) for each $a \in C$, $a \preceq a$;
- ② (*Antisymmetry*) for all $a, b \in C$, if $a \preceq b$ and $b \preceq a$, then $a = b$;
- ③ (*Transitivity*) for all $a, b, c \in C$, if $a \preceq b$ and $b \preceq c$, then $a \preceq c$; and
- ④ (*Local Finiteness*) for all $a, b \in C$, the set $\{c \in C : a \preceq c \preceq b\}$ is finite.

Causal Set Kinematics

A *causal set* \mathcal{C} is an ordered pair (C, \preceq) , with a set C and a relation \preceq defined on C such that:

- ① (*Reflexivity*) for each $a \in C$, $a \preceq a$;
- ② (*Antisymmetry*) for all $a, b \in C$, if $a \preceq b$ and $b \preceq a$, then $a = b$;
- ③ (*Transitivity*) for all $a, b, c \in C$, if $a \preceq b$ and $b \preceq c$, then $a \preceq c$; and
- ④ (*Local Finiteness*) for all $a, b \in C$, the set $\{c \in C : a \preceq c \preceq b\}$ is finite.

(Almost a) Hasse Diagram



I limit attention to complete causal set histories (or "block universe" causets), which are in some respects "classical" objects.³

³Image from p. 230 of Christian Wüthrich, "The Structure of Causal Sets," *Journal for General Philosophy of Science* 43 (2012): 223–241.

The Intuition Behind the *Hauptvermutung*

- Intuitive idea: if one "samples" enough points with their causal relations from a spacetime, one should be able to recover "most" of the geometry.
- But the causal set is supposed to be more fundamental.
- Thus, inverted: if a causal set is such that it *could have been* "sampled" from a spacetime, then that spacetime is "essentially" unique.

The Intuition Behind the *Hauptvermutung*

- Intuitive idea: if one "samples" enough points with their causal relations from a spacetime, one should be able to recover "most" of the geometry.
- But the causal set is supposed to be more fundamental.
- Thus, inverted: if a causal set is such that it *could have been* "sampled" from a spacetime, then that spacetime is "essentially" unique.

The Intuition Behind the *Hauptvermutung*

- Intuitive idea: if one "samples" enough points with their causal relations from a spacetime, one should be able to recover "most" of the geometry.
- But the causal set is supposed to be more fundamental.
- Thus, inverted: if a causal set is such that it *could have been* "sampled" from a spacetime, then that spacetime is "essentially" unique.

Faithful Embeddings

Given a causal set (C, \preceq) and a relativistic spacetime (M, g_{ab}) , an injection $\phi : C \rightarrow M$ is a *faithful embedding* with density ρ when:

- ① ϕ preserves causal relations, i.e., for all $a, b \in C$, $a \preceq b$ iff $\phi(a) \ll \phi(b)$; and
- ② the image $\phi[C]$ is mapped "uniformly" into M at density ρ with respect to the volume measure arising from g_{ab} .

Faithful Embeddings

Given a causal set (C, \preceq) and a relativistic spacetime (M, g_{ab}) , an injection $\phi : C \rightarrow M$ is a *faithful embedding* with density ρ when:

- 1 ϕ preserves causal relations, i.e., for all $a, b \in C$, $a \preceq b$ iff $\phi(a) \ll \phi(b)$; and
- 2 the image $\phi[C]$ is mapped "uniformly" into M at density ρ with respect to the volume measure arising from g_{ab} .

The *Hauptvermutung*

Hauptvermutung If ϕ, ϕ' are faithful embeddings of the causal set \mathcal{C} into relativistic spacetimes $(M, g_{ab}), (M', g'_{ab})$ with density ρ , then (M, g_{ab}) and (M', g'_{ab}) are "approximately isometric above the volume scale ρ^{-1} ".

What does it mean for an embedding to be "uniform"?

- Uniformity w.r.t. the volume determined by the metric.
- It is usually argued on grounds of local Lorentz invariance that this must mean uniform on average.

$$P(n, R) = \frac{(\rho V_R)^n e^{-\rho V_R}}{n!}$$

- If the causal sets are more fundamental, then uniformity must be determined by statistical inference: the embedding could have arisen "with high probability".

What does it mean for an embedding to be "uniform"?

- Uniformity w.r.t. the volume determined by the metric.
- It is usually argued on grounds of local Lorentz invariance that this must mean uniform on average.

$$P(n, R) = \frac{(\rho V_R)^n e^{-\rho V_R}}{n!}$$

- If the causal sets are more fundamental, then uniformity must be determined by statistical inference: the embedding could have arisen "with high probability".

What does it mean for an embedding to be "uniform"?

- Uniformity w.r.t. the volume determined by the metric.
- It is usually argued on grounds of local Lorentz invariance that this must mean uniform on average.

$$P(n, R) = \frac{(\rho V_R)^n e^{-\rho V_R}}{n!}$$

- If the causal sets are more fundamental, then uniformity must be determined by statistical inference: the embedding could have arisen "with high probability".

What does "with high probability" mean?

- Passes a (sufficiently stringent) Fisherian hypothesis test.
- How stringent? Which test statistics?
- These can be determined by closer connection with observables.
 - Uniformity only instrumental for the empirical adequacy of the continuum approximation.

What does "with high probability" mean?

- Passes a (sufficiently stringent) Fisherian hypothesis test.
- How stringent? Which test statistics?
- These can be determined by closer connection with observables.
 - Uniformity only instrumental for the empirical adequacy of the continuum approximation.

What does "with high probability" mean?

- Passes a (sufficiently stringent) Fisherian hypothesis test.
- How stringent? Which test statistics?
- These can be determined by closer connection with observables.
 - Uniformity only instrumental for the empirical adequacy of the continuum approximation.

What does "with high probability" mean?

- Passes a (sufficiently stringent) Fisherian hypothesis test.
- How stringent? Which test statistics?
- These can be determined by closer connection with observables.
 - Uniformity only instrumental for the empirical adequacy of the continuum approximation.

Probability and Infinite Structure

- The open problem is how to find a viable battery of tests.
- Typical tests (e.g., χ^2) require finite data, hence finite volume spacetime
- Tests based on partitioning into equal (finite) volume cells not invariant under the choice of partition.
- In general, even extremely unlikely patterns will occur infinitely often in an infinite data set.

Probability and Infinite Structure

- The open problem is how to find a viable battery of tests.
- Typical tests (e.g., χ^2) require finite data, hence finite volume spacetime
- Tests based on partitioning into equal (finite) volume cells not invariant under the choice of partition.
- In general, even extremely unlikely patterns will occur infinitely often in an infinite data set.

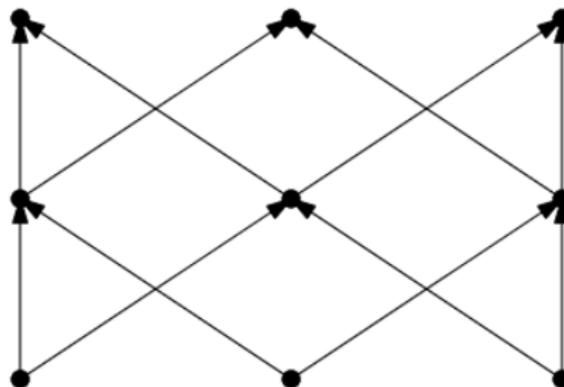
Probability and Infinite Structure

- The open problem is how to find a viable battery of tests.
- Typical tests (e.g., χ^2) require finite data, hence finite volume spacetime
- Tests based on partitioning into equal (finite) volume cells not invariant under the choice of partition.
- In general, even extremely unlikely patterns will occur infinitely often in an infinite data set.

Probability and Infinite Structure

- The open problem is how to find a viable battery of tests.
- Typical tests (e.g., χ^2) require finite data, hence finite volume spacetime
- Tests based on partitioning into equal (finite) volume cells not invariant under the choice of partition.
- In general, even extremely unlikely patterns will occur infinitely often in an infinite data set.

Is requiring an embedding too strong?



It is often remarked that requiring the injection ϕ to be an embedding may be too strong since some small causal sets cannot be embedded.⁴

⁴Image adapted from Christian Wüthrich. "The Structure of Causal Sets," *Journal for General Philosophy of Science* 43 (2012): 223–241.

Coarse-Graining

- Intuitively: for each point, delete with probability p .
- Thus: a coarse-graining is a causet that could have arisen with high probability from a Bernoulli deletion
- Weaken the *hauptvermutung* to embeddings of some coarse-grained causal set
- Same statistical issues arise again for coarse-grainings

Coarse-Graining

- Intuitively: for each point, delete with probability p .
- Thus: a coarse-graining is a causet that could have arisen with high probability from a Bernoulli deletion
- Weaken the *hauptvermutung* to embeddings of some coarse-grained causal set
- Same statistical issues arise again for coarse-grainings

Coarse-Graining

- Intuitively: for each point, delete with probability p .
- Thus: a coarse-graining is a causet that could have arisen with high probability from a Bernoulli deletion
- Weaken the *hauptvermutung* to embeddings of some coarse-grained causal set
- Same statistical issues arise again for coarse-grainings

Coarse-Graining

- Intuitively: for each point, delete with probability p .
- Thus: a coarse-graining is a causet that could have arisen with high probability from a Bernoulli deletion
- Weaken the *hauptvermutung* to embeddings of some coarse-grained causal set
- Same statistical issues arise again for coarse-grainings

Conceptual Issues

- Should a coarse-graining be a kind of averaging? Not clear that deletion can be understood as such.
- Another option: Bernoulli vertex identification on adjacent points (suitably defined)
- However, determining if a causal set arises through such a process is much more complicated

Conceptual Issues

- Should a coarse-graining be a kind of averaging? Not clear that deletion can be understood as such.
- Another option: Bernoulli vertex identification on adjacent points (suitably defined)
- However, determining if a causal set arises through such a process is much more complicated

Conceptual Issues

- Should a coarse-graining be a kind of averaging? Not clear that deletion can be understood as such.
- Another option: Bernoulli vertex identification on adjacent points (suitably defined)
- However, determining if a causal set arises through such a process is much more complicated

Restrictions on Embedding Density

- If the elementary volume is ρ^{-1} , then a coarse-graining with probability p yields a new volume $[(1 - p)\rho]^{-1}$
- Intuition: sufficient decimation makes faithful embedding trivial
- Maximal coarse-grained volume should be determined by well-approximation of observables

Restrictions on Embedding Density

- If the elementary volume is ρ^{-1} , then a coarse-graining with probability p yields a new volume $[(1 - p)\rho]^{-1}$
- Intuition: sufficient decimation makes faithful embedding trivial
- Maximal coarse-grained volume should be determined by well-approximation of observables

Restrictions on Embedding Density

- If the elementary volume is ρ^{-1} , then a coarse-graining with probability p yields a new volume $[(1 - p)\rho]^{-1}$
- Intuition: sufficient decimation makes faithful embedding trivial
- Maximal coarse-grained volume should be determined by well-approximation of observables

What is an "approximate isometry"?

- The original proposal involves two "distances" for causal and volumetric structure.
- Measuring differences in volume structure is simple:

$$d_{vol}(g_{ab}, g'_{ab}) = \sup_{p \in M} \left| \ln \frac{\sqrt{|\det(g_{ab})|_p}}{\sqrt{|\det(g'_{ab})|_p}} \right|$$

- Causal structure is a bit more involved: use difference in volume of Alexandrov intervals

What is an "approximate isometry"?

- The original proposal involves two "distances" for causal and volumetric structure.
- Measuring differences in volume structure is simple:

$$d_{vol}(g_{ab}, g'_{ab}) = \sup_{p \in M} \left| \ln \frac{\sqrt{|\det(g_{ab})|_p|}}{\sqrt{|\det(g'_{ab})|_p|}} \right|$$

- Causal structure is a bit more involved: use difference in volume of Alexandrov intervals

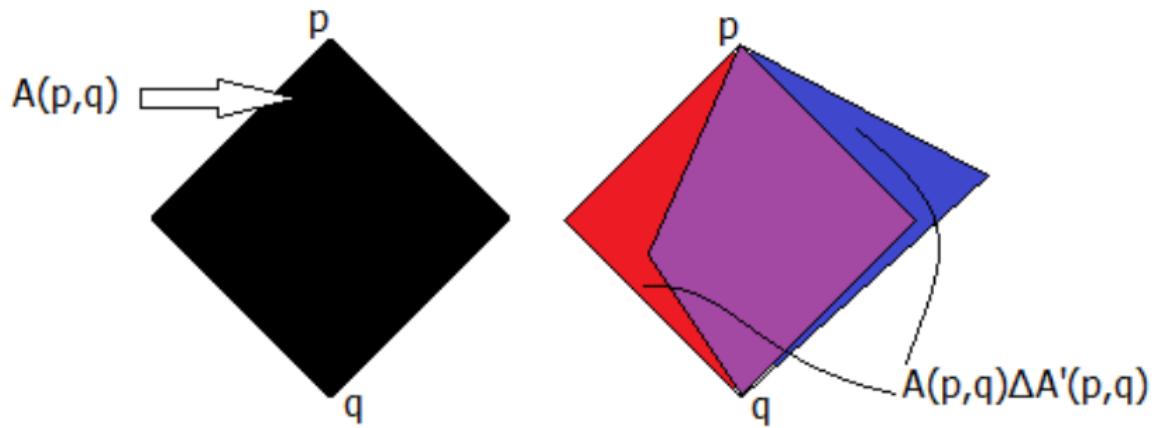
What is an "approximate isometry"?

- The original proposal involves two "distances" for causal and volumetric structure.
- Measuring differences in volume structure is simple:

$$d_{vol}(g_{ab}, g'_{ab}) = \sup_{p \in M} \left| \ln \frac{\sqrt{|\det(g_{ab})|_p|}}{\sqrt{|\det(g'_{ab})|_p|}} \right|$$

- Causal structure is a bit more involved: use difference in volume of Alexandrov intervals

Alexandrov Intervals



Measuring Differences in Causal Structure

$$\alpha(p, q; g_{ab}, g'_{ab}) = \begin{cases} \frac{V(A(p, q) \Delta A'(p, q))}{V(A(p, q) \cup A'(p, q))}, & \text{if } 0 < V(A(p, q) \cup A'(p, q)) < \infty \\ 0, & \text{otherwise,} \end{cases}$$

$$d_{cau}^l(g_{ab}, g'_{ab}) = \sup_{p, q \in M: V(A(p, q) \cup A'(p, q)) \geq l^D} \alpha(p, q; g_{ab}, g'_{ab})$$

l is the elementary (Planck) length and l^D the elementary volume.

Problems with the Proposal

- Too fine: compact non-conformal perturbations of Minkowski spacetime are at a maximal distance
- Noldus⁵ proposed a correction to solve this problem, but it introduces a host of other problems
- The whole scheme is restricted to spacetimes defined on the same manifold.
 - Causal set theorists want to capture a notion of "scale-dependent" topology.

⁵"A new topology on the space of Lorentzian metrics on a fixed manifold," *Classical and Quantum Gravity* 19 (2002): 6075–6107

Problems with the Proposal

- Too fine: compact non-conformal perturbations of Minkowski spacetime are at a maximal distance
- Noldus⁵ proposed a correction to solve this problem, but it introduces a host of other problems
- The whole scheme is restricted to spacetimes defined on the same manifold.
 - Causal set theorists want to capture a notion of "scale-dependent" topology.

⁵"A new topology on the space of Lorentzian metrics on a fixed manifold," *Classical and Quantum Gravity* 19 (2002): 6075–6107.

Problems with the Proposal

- Too fine: compact non-conformal perturbations of Minkowski spacetime are at a maximal distance
- Noldus⁵ proposed a correction to solve this problem, but it introduces a host of other problems
- The whole scheme is restricted to spacetimes defined on the same manifold.
 - Causal set theorists want to capture a notion of "scale-dependent" topology.

⁵“A new topology on the space of Lorentzian metrics on a fixed manifold,” *Classical and Quantum Gravity* 19 (2002): 6075–6107.

Problems with the Proposal

- Too fine: compact non-conformal perturbations of Minkowski spacetime are at a maximal distance
- Noldus⁵ proposed a correction to solve this problem, but it introduces a host of other problems
- The whole scheme is restricted to spacetimes defined on the same manifold.
 - Causal set theorists want to capture a notion of "scale-dependent" topology.

⁵"A new topology on the space of Lorentzian metrics on a fixed manifold," *Classical and Quantum Gravity* 19 (2002): 6075–6107.

Bombelli's Statistical Proposal⁶

- Sample n points at random from a spacetime and consider the induced causal structure
- One can write down an expression for $P_n(\mathcal{C}|G)$, the probability that drawing n such points from isometry class G will yield causal set \mathcal{C} .
- Idea: compare isometry classes according to $P_n(\mathcal{C}|G)$ for all $|\mathcal{C}| = n$, where n is determined by the embedding density
- E.g., since $\sum_{\mathcal{C}} P_n(\mathcal{C}|G) = 1$, $\sqrt{P_n(\mathcal{C}|G)}$ can be interpreted as coordinates on a high-dimensional sphere

⁶“Statistical Lorentzian geometry and the closeness of Lorentzian manifolds,” *Journal of Mathematical Physics* 41.10 (2000): 6944–6958.

Bombelli's Statistical Proposal⁶

- Sample n points at random from a spacetime and consider the induced causal structure
- One can write down an expression for $P_n(\mathcal{C}|G)$, the probability that drawing n such points from isometry class G will yield causal set \mathcal{C} .
- Idea: compare isometry classes according to $P_n(\mathcal{C}|G)$ for all $|\mathcal{C}| = n$, where n is determined by the embedding density
- E.g., since $\sum_{\mathcal{C}} P_n(\mathcal{C}|G) = 1$, $\sqrt{P_n(\mathcal{C}|G)}$ can be interpreted as coordinates on a high-dimensional sphere

⁶“Statistical Lorentzian geometry and the closeness of Lorentzian manifolds,” *Journal of Mathematical Physics* 41.10 (2000): 6944–6958.

Bombelli's Statistical Proposal⁶

- Sample n points at random from a spacetime and consider the induced causal structure
- One can write down an expression for $P_n(\mathcal{C}|G)$, the probability that drawing n such points from isometry class G will yield causal set \mathcal{C} .
- Idea: compare isometry classes according to $P_n(\mathcal{C}|G)$ for all $|\mathcal{C}| = n$, where n is determined by the embedding density
- E.g., since $\sum_{\mathcal{C}} P_n(\mathcal{C}|G) = 1$, $\sqrt{P_n(\mathcal{C}|G)}$ can be interpreted as coordinates on a high-dimensional sphere

⁶“Statistical Lorentzian geometry and the closeness of Lorentzian manifolds,” *Journal of Mathematical Physics* 41.10 (2000): 6944–6958.

Bombelli's Statistical Proposal⁶

- Sample n points at random from a spacetime and consider the induced causal structure
- One can write down an expression for $P_n(\mathcal{C}|G)$, the probability that drawing n such points from isometry class G will yield causal set \mathcal{C} .
- Idea: compare isometry classes according to $P_n(\mathcal{C}|G)$ for all $|\mathcal{C}| = n$, where n is determined by the embedding density
- E.g., since $\sum_{\mathcal{C}} P_n(\mathcal{C}|G) = 1$, $\sqrt{P_n(\mathcal{C}|G)}$ can be interpreted as coordinates on a high-dimensional sphere

⁶“Statistical Lorentzian geometry and the closeness of Lorentzian manifolds,” *Journal of Mathematical Physics* 41.10 (2000): 6944–6958.

Problems with the Statistical Proposal

- Many inequivalent ways to encode differences in the $P_n(C|G)$ with a distance function
 - Less of a problem if relevant distances are determined by approximation of observables
 - Very difficult to calculate for large n
 - Only works for spacetimes of finite volume

Problems with the Statistical Proposal

- Many inequivalent ways to encode differences in the $P_n(C|G)$ with a distance function
 - Less of a problem if relevant distances are determined by approximation of observables
- Very difficult to calculate for large n
- Only works for spacetimes of finite volume

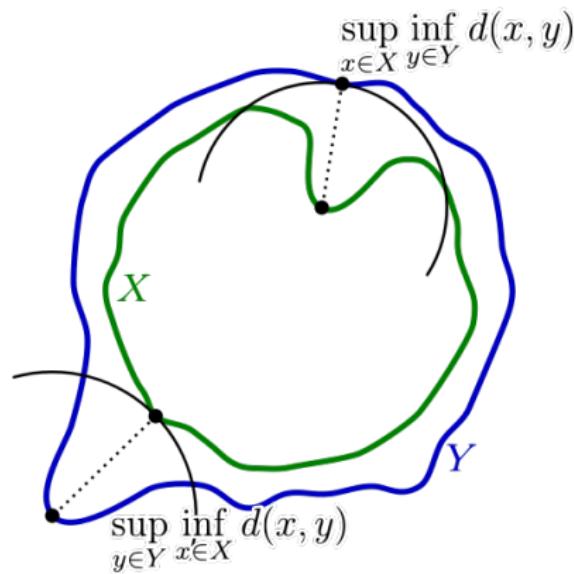
Problems with the Statistical Proposal

- Many inequivalent ways to encode differences in the $P_n(C|G)$ with a distance function
 - Less of a problem if relevant distances are determined by approximation of observables
- Very difficult to calculate for large n
- Only works for spacetimes of finite volume

Problems with the Statistical Proposal

- Many inequivalent ways to encode differences in the $P_n(C|G)$ with a distance function
 - Less of a problem if relevant distances are determined by approximation of observables
- Very difficult to calculate for large n
- Only works for spacetimes of finite volume

Hausdorff Distance



$$d_H(X, Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y)\}$$

Gromov-Hausdorff Distance

- The Gromov-Hausdorff distance $d_{GH}(X, Y)$ is the infimum of $d_H(f[X], f'[Y])$ for all isometric embeddings $f : X \rightarrow Z$ and $f' : Y \rightarrow Z$ be isometric embeddings
- Riemannian manifolds are metric spaces vis-à-vis geodesic distance
- But how can this be extended to Lorentzian manifolds?

Gromov-Hausdorff Distance

- The Gromov-Hausdorff distance $d_{GH}(X, Y)$ is the infimum of $d_H(f[X], f'[Y])$ for all isometric embeddings $f : X \rightarrow Z$ and $f' : Y \rightarrow Z$ be isometric embeddings
- Riemannian manifolds are metric spaces vis-à-vis geodesic distance
- But how can this be extended to Lorentzian manifolds?

Gromov-Hausdorff Distance

- The Gromov-Hausdorff distance $d_{GH}(X, Y)$ is the infimum of $d_H(f[X], f'[Y])$ for all isometric embeddings $f : X \rightarrow Z$ and $f' : Y \rightarrow Z$ be isometric embeddings
- Riemannian manifolds are metric spaces vis-à-vis geodesic distance
- But how can this be extended to Lorentzian manifolds?

Lorentz Spaces

- A Lorentz distance is a function $d : M \rightarrow [0, \infty]$ satisfying
 - 1 $d(x, x) = 0$ for all $x \in M$;
 - 2 if $d(x, y) > 0$, then $d(y, x) = 0$ for all $x, y \in M$; and
 - 3 if $d(x, y)d(y, z) > 0$, then $d(x, z) \geq d(x, y) + d(y, z)$ for all $x, y, z \in M$.
- Each time-oriented relativistic spacetime (M, g_{ab}) has a Lorentz distance d_g defined by future-directed timelike geodesic distance.

Lorentz Spaces

- A Lorentz distance is a function $d : M \rightarrow [0, \infty]$ satisfying
 - 1 $d(x, x) = 0$ for all $x \in M$;
 - 2 if $d(x, y) > 0$, then $d(y, x) = 0$ for all $x, y \in M$; and
 - 3 if $d(x, y)d(y, z) > 0$, then $d(x, z) \geq d(x, y) + d(y, z)$ for all $x, y, z \in M$.
- Each time-oriented relativistic spacetime (M, g_{ab}) has a Lorentz distance d_g defined by future-directed timelike geodesic distance.

Lorentz Spaces

- A Lorentz distance is a function $d : M \rightarrow [0, \infty]$ satisfying
 - 1 $d(x, x) = 0$ for all $x \in M$;
 - 2 if $d(x, y) > 0$, then $d(y, x) = 0$ for all $x, y \in M$; and
 - 3 if $d(x, y)d(y, z) > 0$, then $d(x, z) \geq d(x, y) + d(y, z)$ for all $x, y, z \in M$.
- Each time-oriented relativistic spacetime (M, g_{ab}) has a Lorentz distance d_g defined by future-directed timelike geodesic distance.

Lorentz Spaces

- A Lorentz distance is a function $d : M \rightarrow [0, \infty]$ satisfying
 - 1 $d(x, x) = 0$ for all $x \in M$;
 - 2 if $d(x, y) > 0$, then $d(y, x) = 0$ for all $x, y \in M$; and
 - 3 if $d(x, y)d(y, z) > 0$, then $d(x, z) \geq d(x, y) + d(y, z)$ for all $x, y, z \in M$.
- Each time-oriented relativistic spacetime (M, g_{ab}) has a Lorentz distance d_g defined by future-directed timelike geodesic distance.

Lorentz Spaces

- A Lorentz distance is a function $d : M \rightarrow [0, \infty]$ satisfying
 - 1 $d(x, x) = 0$ for all $x \in M$;
 - 2 if $d(x, y) > 0$, then $d(y, x) = 0$ for all $x, y \in M$; and
 - 3 if $d(x, y)d(y, z) > 0$, then $d(x, z) \geq d(x, y) + d(y, z)$ for all $x, y, z \in M$.
- Each time-oriented relativistic spacetime (M, g_{ab}) has a Lorentz distance d_g defined by future-directed timelike geodesic distance.

A Lorentzian Gromov-Hausdorff Distance

- Say that $(M, g_{ab}) \approx_\epsilon (M', g'_{ab})$ when there are maps $\psi : M \rightarrow M'$ and $\psi' : M' \rightarrow M$ such that
 - ① $|d_{g'}(\psi(p_1), \psi(p_2)) - d_g(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M$, and
 - ② $|d_g(\psi'(p_1), \psi'(p_2)) - d_{g'}(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M'$.
- Noldus⁷ then proposed

$$d_{GH}((M, g_{ab}), (M', g'_{ab})) = \inf\{\epsilon > 0 : (M, g_{ab}) \approx_\epsilon (M', g'_{ab})\}$$

⁷“A Lorentzian Gromov-Hausdorff notion of distance,” *Classical and Quantum Gravity* 21 (2004): 839–850.

A Lorentzian Gromov-Hausdorff Distance

- Say that $(M, g_{ab}) \approx_\epsilon (M', g'_{ab})$ when there are maps $\psi : M \rightarrow M'$ and $\psi' : M' \rightarrow M$ such that
 - ① $|d_{g'}(\psi(p_1), \psi(p_2)) - d_g(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M$, and
 - ② $|d_g(\psi'(p_1), \psi'(p_2)) - d_{g'}(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M'$.
- Noldus⁷ then proposed

$$d_{GH}((M, g_{ab}), (M', g'_{ab})) = \inf\{\epsilon > 0 : (M, g_{ab}) \approx_\epsilon (M', g'_{ab})\}$$

⁷“A Lorentzian Gromov-Hausdorff notion of distance,” *Classical and Quantum Gravity* 21 (2004): 839–850.

A Lorentzian Gromov-Hausdorff Distance

- Say that $(M, g_{ab}) \approx_{\epsilon} (M', g'_{ab})$ when there are maps $\psi : M \rightarrow M'$ and $\psi' : M' \rightarrow M$ such that
 - 1 $|d_{g'}(\psi(p_1), \psi(p_2)) - d_g(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M$, and
 - 2 $|d_g(\psi'(p_1), \psi'(p_2)) - d_{g'}(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M'$.
- Noldus⁷ then proposed

$$d_{GH}((M, g_{ab}), (M', g'_{ab})) = \inf\{\epsilon > 0 : (M, g_{ab}) \approx_{\epsilon} (M', g'_{ab})\}$$

⁷“A Lorentzian Gromov-Hausdorff notion of distance,” *Classical and Quantum Gravity* 21 (2004): 839–850.

A Lorentzian Gromov-Hausdorff Distance

- Say that $(M, g_{ab}) \approx_{\epsilon} (M', g'_{ab})$ when there are maps $\psi : M \rightarrow M'$ and $\psi' : M' \rightarrow M$ such that
 - ① $|d_{g'}(\psi(p_1), \psi(p_2)) - d_g(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M$, and
 - ② $|d_g(\psi'(p_1), \psi'(p_2)) - d_{g'}(p_1, p_2)| < \epsilon$ for all $p_1, p_2 \in M'$.
- Noldus⁷ then proposed

$$d_{GH}((M, g_{ab}), (M', g'_{ab})) = \inf\{\epsilon > 0 : (M, g_{ab}) \approx_{\epsilon} (M', g'_{ab})\}$$

⁷“A Lorentzian Gromov-Hausdorff notion of distance,” *Classical and Quantum Gravity* 21 (2004): 839–850.

A New Hope?

- The relationship with observables has not been worked out in much detail.
- One version is restricted to compact globally hyperbolic spacetimes.
- Another (recent!⁸) version permits distinguishing spacetimes under some technical conditions whose interpretation is not clear.
- If one can make causal sets into Lorentz spaces, then one could compare causal sets and spacetimes directly without the intermediary of a faithful embedding.

⁸Bombelli, Luca, Johan Noldus, and Julio Tafoya. “Lorentzian Manifolds and Causal Sets as Partially Ordered Measure Spaces,” preprint LPT-Orsay 12-32, arXiv:1212.0601v1.

A New Hope?

- The relationship with observables has not been worked out in much detail.
- One version is restricted to compact globally hyperbolic spacetimes.
- Another (recent!⁸) version permits distinguishing spacetimes under some technical conditions whose interpretation is not clear.
- If one can make causal sets into Lorentz spaces, then one could compare causal sets and spacetimes directly without the intermediary of a faithful embedding.

⁸Bombelli, Luca, Johan Noldus, and Julio Tafoya. "Lorentzian Manifolds and Causal Sets as Partially Ordered Measure Spaces," preprint LPT-Orsay 12-32, arXiv:1212.0601v1.

A New Hope?

- The relationship with observables has not been worked out in much detail.
- One version is restricted to compact globally hyperbolic spacetimes.
- Another (recent!⁸) version permits distinguishing spacetimes under some technical conditions whose interpretation is not clear.
- If one can make causal sets into Lorentz spaces, then one could compare causal sets and spacetimes directly without the intermediary of a faithful embedding.

⁸Bombelli, Luca, Johan Noldus, and Julio Tafoya. “Lorentzian Manifolds and Causal Sets as Partially Ordered Measure Spaces,” preprint LPT-Orsay 12-32, arXiv:1212.0601v1.

A New Hope?

- The relationship with observables has not been worked out in much detail.
- One version is restricted to compact globally hyperbolic spacetimes.
- Another (recent!⁸) version permits distinguishing spacetimes under some technical conditions whose interpretation is not clear.
- If one can make causal sets into Lorentz spaces, then one could compare causal sets and spacetimes directly without the intermediary of a faithful embedding.

⁸Bombelli, Luca, Johan Noldus, and Julio Tafoya. "Lorentzian Manifolds and Causal Sets as Partially Ordered Measure Spaces," preprint LPT-Orsay 12-32, arXiv:1212.0601v1.

Reduction without Derivation?

- **Many obstacles and forks in the road ahead.**
- Some problems could be mollified by closer attention to approximation of observables.
- The *hauptvermutung* does not seem to envision a derivation of general relativity from causal set theory.
- Yet its fulfillment would seem to provide some kind of explanation for success of continuum spacetime.

Reduction without Derivation?

- Many obstacles and forks in the road ahead.
- Some problems could be mollified by closer attention to approximation of observables.
- The *hauptvermutung* does not seem to envision a derivation of general relativity from causal set theory.
- Yet its fulfillment would seem to provide some kind of explanation for success of continuum spacetime.

Reduction without Derivation?

- Many obstacles and forks in the road ahead.
- Some problems could be mollified by closer attention to approximation of observables.
- The *hauptvermutung* does not seem to envision a derivation of general relativity from causal set theory.
- Yet its fulfillment would seem to provide some kind of explanation for success of continuum spacetime.

Reduction without Derivation?

- Many obstacles and forks in the road ahead.
- Some problems could be mollified by closer attention to approximation of observables.
- The *hauptvermutung* does not seem to envision a derivation of general relativity from causal set theory.
- Yet its fulfillment would seem to provide some kind of explanation for success of continuum spacetime.