Conceptual Analysis and Quantum Gravity

Maria Kon

Unit for HPS and The Centre for Time

New Agendas for the Study of Time:

Connecting the Disciplines

http://newagendasstudyoftime.wordpress.com/

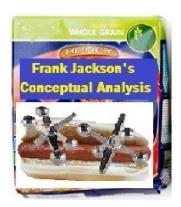
Aim: Develop a means of analyzing the temporal concepts in physical theories.

"[...] by 'quantum gravity' we mean any approach to the problem of combining [...] quantum theory with general relativity. An immense amount of effort has been devoted in the last forty years to combining these two pillars of modern physics. Yet [...] there is still no satisfactory theory: rather, there are several competing approaches, each of which faces severe problems, both technical and conceptual." Butterfield and Isham, 2001

Outline

- I. Conceptual Analysis and the Concept of Time in Quantum Gravity
 - a. Frank Jackson's Conceptual Analysis and Concepts in Physics
 - i. Jackson's Conceptual Analysis (JCA)
 - ii. A Problem with JCA
 - b. Two Desiderata for a QG Conceptual Analysis
- II. The Alternative Conceptual Analysis (ACA)
- III. Case Study: Application of ACA to Carlo Rovelli's Partial Observables

I. Conceptual Analysis and *time* in physical theories



Jackson's Conceptual Analysis is "[...] perhaps the most explicit and detailed account of [conceptual analysis] available." Laurence and Margolis 2003

i. Jackson's Conceptual Analysis

Ingredients

- Concepts
 - A concept just is a term's meaning.
 - Some are complex, i.e., are composed of other concepts.
- Network Theory
 - A concept's structure is determined by its <u>role</u> in a theory.
 - This role can be put in terms of a definite description.
 - The referent of this concept is whatever satisfies this description.

Types of Conceptual Structure

Theory Theory e.g., Network Theory

- Concepts form a web in which they are interrelated.
- A concept's meaning is determined by its role in a theory.

Classical Theory

A concept has a definitional structure, i.e., it's composed simpler concepts that express its necessary and sufficient conditions.

Prototype Theory

A concepts has a probabilistic structure in that most are complex mental representations whose structure encodes conditions that their referents **tend** to have.

i. Jackson's Conceptual Analysis (JCA) <u>Usage</u>

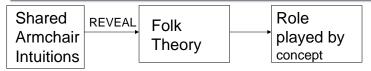
Use to solve the location problem.

 The location problem =df the problem of reconciling any given phenomena with one's lower-level ontology Upper-level claims about the world, e.g.,
There is water.

Relation?

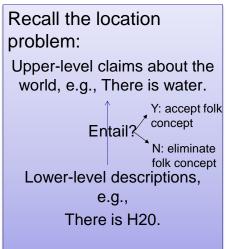
Lower-level descriptions, e.g.,
There is H₂0.

JCA: Instructions- 2 Steps


<u>STEP 1</u>: Find out what counts as the referents of upper-level terms, e.g., 'water'.

- Establish the Shared Folk Theory
 - · Why?
 - Concept=term's meaning=the role the concept plays in the theory
 - How?

<u>STEP 1</u>: Find out what counts as the referents of upper-level terms, e.g., 'water'.



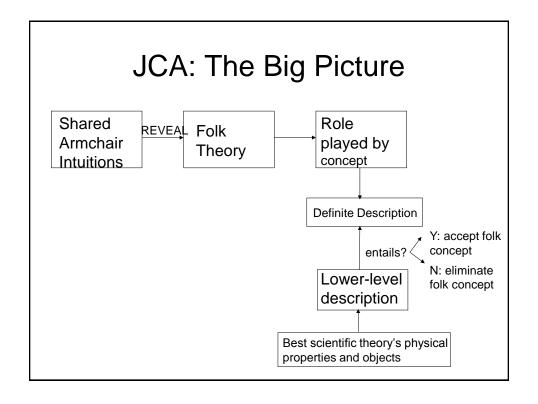
- Once we have the folk theory, we can determine what role our concept plays in it.
- This role can be put in a definite description, e.g.,

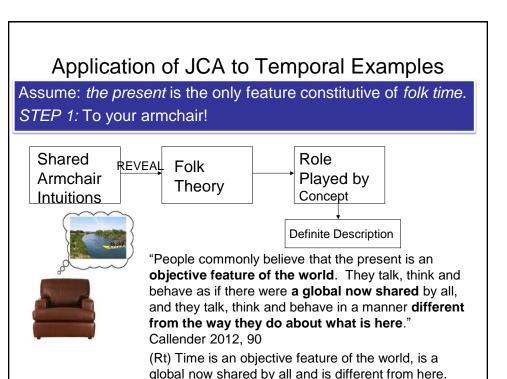
(Rw) Water is the stuff that fills lakes, falls from the sky, is colourless, odourless, etc., or which satisfies enough of the foregoing.

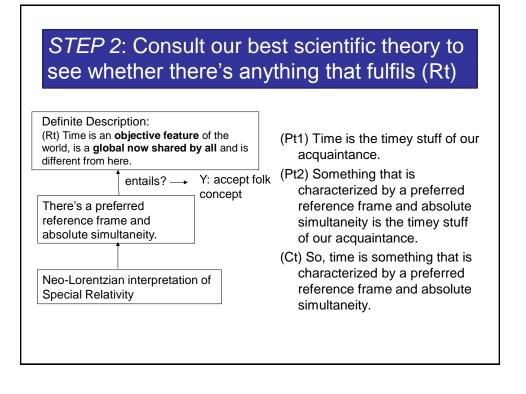
It's indicative of some of the properties its referent must have- STEP 1 COMPLETE!

<u>Step 2</u>: Determine whether statements involving the concept are entailed by lower-level descriptions.

- (P1) Water is the watery stuff of our acquaintance.
- (P2) H₂O is the watery stuff of our acquaintance.
- (C) So, water is H₂O.


In this case our folk concept of water is identifiable with our lower-level H₂O. Location Problem Solved!


JCA Assumption


 We get our lower-level description from our best scientific theory.

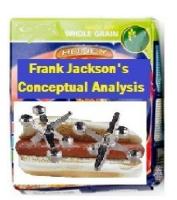
Jackson on how to establish 'H₂O's' referent:

[I]t is reasonable to suppose that physical science, despite its known inadequacies, has advanced sufficiently for us to be confident of the *kinds* of properties and relations that are needed to give a complete notion of non-sentient reality. They will broadly be of a kind with those that appear in current science. (1998, 7)

Definite Description:

(Rt) Time is an objective feature of the world, is a global now shared by all and is different from here.

entails? — N: eliminate folk concept


There's no preferred reference frame or absolute simultaneity.

Einsteinian interpretation of Special Relativity

JCA's Looking Good...

Found a ready-made conceptual analysis for *time*?

NO!

ii. A Problem with JCA

 Recall: We get our lower-level description from our best scientific theory.

Assuming that we can just read our ontology and metaphysics off a scientific theory is problematic.

- -May ignore other ontological and metaphysical options the theory may have.
- -Risks incorporating entities or metaphysics that are redundant, irrelevant or inconsistent.

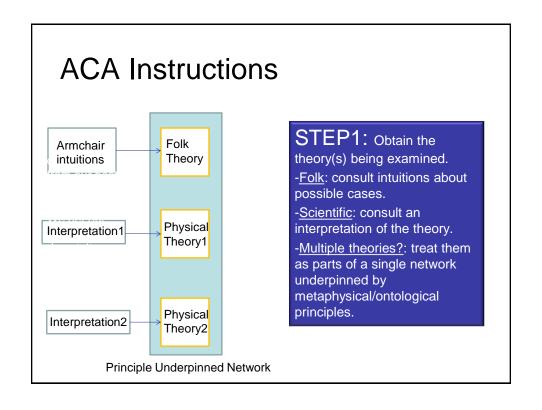
UPSHOTS:

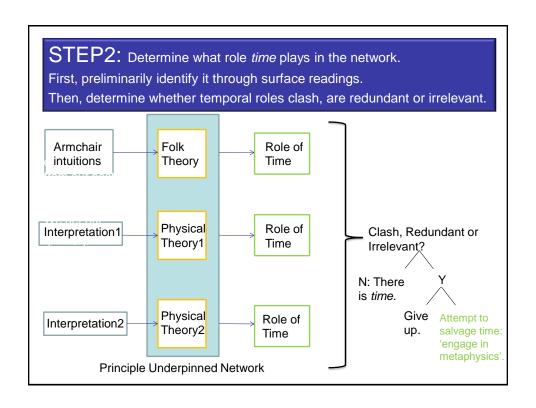
We should be aware of other readings and, at least, qualify our analysis. The concepts read off a theory should not be taken for granted- such concepts are themselves in need of analysis.

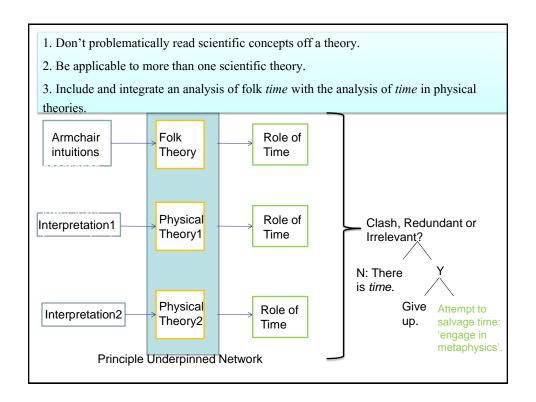
Shopping List

From JCA's problem:

1. Don't problematically read scientific concepts off a theory.


In view of quantum gravity target:


- 2. Be applicable to more than one scientific theory.
- 3. Include and integrate an analysis of folk *time* with the analysis of *time* in physical theories.


II. The Alternative Conceptual Analysis

The Alternative Conceptual Analysis

III: Application to Rovelli

Partial Observables: Motivational Preliminaries

Rovelli says:

Classical General Relativity (GR) is *fully* relational.

- -GR describes the world as a set of interacting fields.
- -Its manifold has no physical content.

<u>His Strategy for Creating a</u> <u>Coherent Quantum Gravity</u>

- 1. Spacetime=A Dynamical field (lesson from Einstein in GR).
- Every dynamical field has quantum properties (QM).
- 3. So, spacetime itself must exhibit quantum properties.
- 4. So, these properties must be represented in QM terms.
- But, existent quantum field theories rely on a fixed, non-dynamical background metric.
- 6. So, gotta make a background-independent QFT.

Partial Observables: Demoting 'special' time.

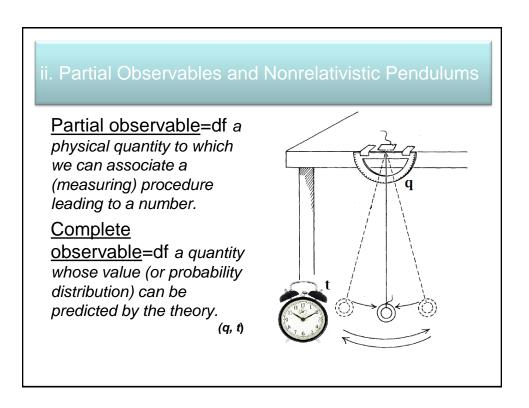
AIM: Redefine 'observables' in a 'relativistic' (≈relational) manner.

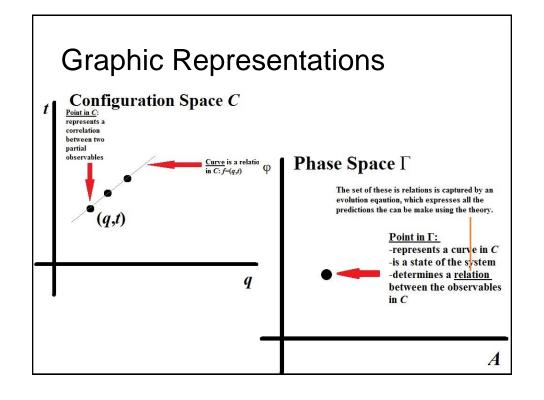
<u>Observables</u>=df the quantities involved in physical measurements.

- v. Conventional observables:
- -make reference to 'special' time variable
- -occurs at a moment of time, e.g., position at a time

Rovelli initially puts this in terms of a nonrelativistic pendulum case. But, it is worth examining:

The structure "described for the example of the pendulum is completely general, and **is present** in all relativistic and nonrelativistic fundamental systems." Rovelli 2002


i. Underpinning Cartesian Principles


ONT: Fundamentally, there are only physical objects.

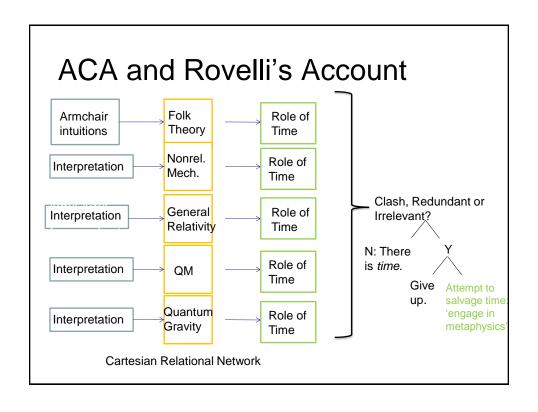
ONTs: Space is nothing more than a relational property that physical objects can have.

P_t: Time is only a conventional measure of a relational property that physical objects can have.

ONT_t: Whatever time measures is nothing more than a relational property that physical objects can have.

Summary and Alleged Role in Rovelli's Account

To sum up,


- -<u>Partial observable</u>: is not itself predictable and is a measure.
- -There are <u>correlations</u> between partial observables.
- -These are cashed out in *C.*
- -A curve in *C* is a <u>state</u> of the system.
- -Evolution equation can be obtained through relations between C and Γ .

Regarding these notions, Rovelli contends:

t is on 'an equal footing' with other variables; it isn't 'special'.

What does this mean, and how do we interpret slogan to forget about time?

To ACA!

Sketch of an analysis of the role of time in Partial Observables: 'Equal Footing'?

Observable	Role: Measurement of	Type of Relation Involved	Duration of the Observable
t	Local succession	Temporal?	Momentary
q	Position of pendulum	Spatial	Momentary
(q,t)	q and t	Correlation: Spatial and Temporal?	Momentary

 $\it t$ and $\it q$ are both just conventional measures of the **relations** among objects, not some background, independent parameters.

But, t appears to be a measurement of local succession.

ONT violated? Not necessarily: develop as a relation, e.g., each event is temporally 'next to' another just as objects can be next to each other spatially at a time.

So, q and t seem to be on equal footing.

Sketch of an analysis of the role of time in Partial Observables: 'Equal Footing'?

Observable	Role: Measurement of	Type of Relation Involved	Duration of the Observable
t	Local succession	Temporal?	Momentary
q	Extension of bob	Spatial	Momentary
(q,t)	q and t	Correlation: Spatial and Temporal?	Momentary

Consider the correlation involved with (q,t).

Local simultaneity appears to be required.

ONTt: Whatever time measures is nothing more than a relational property that physical objects can have.

Not clear that t and q are on equal footing re correlations of complete observables: an instant seems to be privileged.

iii. Partial Observables and QM

Partial observables

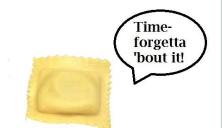
- -e.g., q and t
- -determine selfadjoint operators in K (of rigged Hilbert space S⊃K⊃S')

Their eigenstates $|q,t\rangle$ are in S.

- -correspond to a quantum event
- -'kinematical state'
- The scalar product of these states in Hilbert space determines the probability that one event happened given that the other event happened.

Partial Observables and Probabilities

- Suppose there are two events (q, t) and (q',t') in the extended configuration space.
- We observed (q',t').
 What is the probability of observing (q,t)?
- No realistic measuring device will give Δq=0 or Δt = 0.
- For two regions R and R', if a detector at R' has detected the pendulum, what is the probability that a detector at R' detects the probability?


We can recover the conventional probability interpretation of the wavefunction if we assume that $\Delta t \ll mq^2/\hbar$.

Relational Interpretation of QM

"QT must be understood as an account of the way distinct physical systems affect one another when they interact, and not the way physical systems 'are'." (2004, 215)

- Thus, these simultaneity relations may clash with ONT and his 'equal footing' claim.
- These apparent clashes highlight the need for the role of such simultaneity in the network to be further examined.

Rovelli Conclusion

- Given his relationalist commitments and his slogan, there is much conceptual cleanup work to be done!
- Brief examination of just partial observables illustrates the need to suss out and assess presupposed temporal concepts and try to fit them in his relationalist network.

ACA Conclusion

- ACA does seem applicable to Rovelli: has a network that appears to be underpinned by Cartesian principles.
- Appears useful for schematizing and evaluating his temporal concepts.

References

Butterfield, J. and Isham, C.J. "Spacetime and the Philosophical Challenge of Quantum Gravity." Philosophy Meets Physics at the Planck Scale. eds. Callender and Huggett (Cambridge: CUP, 2001).

Callender, C. "Time's Ontic Voltage." The Future of Philosophy and Time. ed. Bardon (New York: Routledge, 2012.

Gorham, G. "Descartes on Time and Duration." Early Science and Medicine 12 2007: 28-54.

Oxford University Press, 1998).

Laurence, S and Margolis, E. "Concepts and Conceptual Analysis." Philosophy and Phenomenological Research 67, 2003: 253-82.

Miscevic, N. "Rescuing Conceptual Analysis." Croatian Journal of Philosophy 5, 2005: 447-463. Rovelli, C. "Relational Quantum Mechanics. International Journal of Theoretical Physics 35,

----. "Quantum Spacetime: What do we know?." Philosophy Meets Physics at the Planck Scale. eds. Callender and Huggett (Cambridge: CUP,

----. "Partial Observables." Physical Review D65, 2002: 1-8.

----. "A note on the foundation of relativistic Jackson, F. From Ethics to Metaphysics. (Oxford: mechanics." Proceeding of the 15th SIGRAV Conference on General Relativity and Gravitational Physics, Rome, Sept 2002: gr-qc/0111037.

----. Quantum Gravity. (Cambridge: CUP, 2004).

----. "Forget time." (FQXi essay contest submission: 2011).