The geometry of black hole entropy

John Dougherty

UC San Diego

March 13, 2015

The laws of BHT

- \bullet is constant on the horizon
- 2 $\delta A \ge 0$ in any process

The laws of BHT

- \bullet $\delta A \ge 0$ in any process

Puzzles

- The δ acting on M and J represents a perturbation of a quantity at spatial infinity; δA is a perturbation at the horizon. How do they relate? (Curiel 2014)
- 2 How do the δA in the first and second laws relate?

Wald entropy

lyer and Wald (1994) propose a definition of entropy that will help us answer these. The Wald entropy applies to any diffeomorphism covariant Lagrangian field theory of the form

$$L\left(g_{ab}, \overset{\circ}{\nabla}_{a_1}g_{ab}, \dots, \overset{\circ}{\nabla}_{(a_1} \cdots \overset{\circ}{\nabla}_{a_k)}g_{ab}, \psi, \overset{\circ}{\nabla}_{a_1}\psi, \dots, \overset{\circ}{\nabla}_{(a_1} \cdots \overset{\circ}{\nabla}_{a_l)}\psi, \overset{\circ}{\gamma}\right)$$

On this definition, the perturbations do not act at spatial infinity and the horizon, but globally.

Wald entropy

Two steps

Show that

$$L\left(g_{ab}, \overset{\circ}{\nabla}_{a_1}g_{ab}, \dots, \overset{\circ}{\nabla}_{(a_1} \cdots \overset{\circ}{\nabla}_{a_k)}g_{ab}, \psi, \overset{\circ}{\nabla}_{a_1}\psi, \dots, \overset{\circ}{\nabla}_{(a_1} \cdots \overset{\circ}{\nabla}_{a_l)}\psi, \overset{\circ}{\gamma}\right)$$

may be written may be written

$$L\left(\mathbf{g}_{\mathsf{a}\mathsf{b}}, \nabla_{\mathsf{a}_1} R_{\mathsf{bcde}}, \dots, \nabla_{\left(\mathsf{a}_1} \cdots \nabla_{\mathsf{a}_{\mathsf{m}}\right)} R_{\mathsf{bcde}}, \psi, \nabla_{\mathsf{a}_1} \psi, \dots, \nabla_{\left(\mathsf{a}_1} \cdots \nabla_{\mathsf{a}_{\mathsf{l}}\right)} \psi\right)$$

with R_{bcde} the Riemann tensor of g_{ab} .

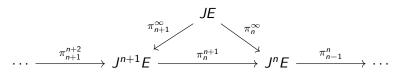
2 Construct differential forms satisfying the first law using our new *L*.

Let M be some spacetime, and consider a bundle $\pi: E \to M$ over it.

The 1-jet bundle $\pi^1: J^1E \to M$ adds data about first derivatives.

The 2-jet bundle $\pi^2: J^2E \to M$ adds data about second derivatives.

• The $(\infty$ -)jet bundle $\pi^\infty: JE \to M$ is the inverse limit $JE = \varprojlim J^n E$.



- Above some point $p \in M$, JE has all possible Taylor series around p. It gives all the ways a section of E could look over an infinitesimal region.
- For any section ϕ of E, there is a section $j^{\infty}\phi$ of E that assigns to $p \in M$ the Taylor expansion of ϕ about p.

Variational bicomplex

- The variational bicomplex $\Omega^{*,*}(JE)$ of E is the de Rham complex of differential forms on JE with the exterior derivative $d + \delta$.
- ullet For a Lagrangian L, the global first variational formula

$$\delta L = E + d\Theta$$

is an equation of (n, 1)-forms on JE.

• Wald's locally constructed forms $\Omega^*_{\mathrm{loc}}(M)$ are the image of the pullback along

$$e_{\infty}: M \times \Gamma(E) \xrightarrow{(\mathrm{id},j^{\infty})} M \times \Gamma(JE) \xrightarrow{\mathrm{ev}} JE$$

Global equation of first variation (Zuckerman, 1987)

Theorem

For any (n, 0)-form L, there is an (n, 1)-form E and an (n - 1, 1)-form Θ such that

$$\delta L = E + d\Theta$$

Example: The Gauss-Bonnet theorem (Anderson 1989, xxii-xxv)

The Gauss-Bonnet theorem:

$$\int_{M} K \, dA = 2\pi \chi(X)$$

for a 2D Riemannian X with Gaussian curvature K.

Take $E = \mathbb{R}^2 \times \mathbb{R}^3$ over $M = \mathbb{R}^2$, restrict attention to local, regularly parametrized surfaces.

 $\delta L = d\eta$, so the LHS vanishes.

What gives?

- We're missing the *global* aspects of the problem.
 - ① The problem should be invariant under Euclidean motions in \mathbb{R}^3 and orientation-preserving diffeomorphisms of the base space.
 - 2 If we consider only equivariant forms, then we no longer have $\delta L = d\eta$.
 - 3 This leads us to the global first variational formula

$$\delta L = E + d\Theta$$

• Lesson: the global first variational formula $\delta L = E + d\Theta$ incorporates covariance, and encodes global information about the bundle of interest.

lyer and Wald step 1

- A Lagrangian is determined by a function $L: JE \to \mathbb{R}$.
- IW's result: there is a bijection between functions

$$JE_{\mathsf{g}} \times_{\mathsf{M}} JE_{\psi} \times_{\mathsf{M}} E_{\overset{\circ}{\gamma}} \to \mathbb{R}$$

and functions

$$JE_g \times_M JE_R \times_M JE_\psi \to \mathbb{R}$$

such that L uses the R^a_{bcd} of g_{ab} .

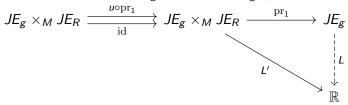
Proof

Consider the function

$$u: J^{2}E_{g} \to E_{g} \times_{M} E_{R}$$

$$u: (p, g_{\mu\nu}, g_{\mu\nu,\lambda}, g_{\mu\nu,\lambda\sigma}) \mapsto ((p, g_{\mu\nu}), (p, R^{\mu}{}_{\nu\lambda\sigma}))$$

• u splits the projection $JE_g \times_M JE_R \to JE_g$ (i.e., $\operatorname{pr}_1 \circ u = \operatorname{id}$), so



is an absolute coequalizer.

Diffeomorphism invariance

We've shown that L can always be rewritten

$$L\left(g_{ab}, \overset{\circ}{\nabla}_{a_1}R_{bcde}, \dots, \overset{\circ}{\nabla}_{(a_1} \dots \overset{\circ}{\nabla}_{a_m)}R_{bcde}, \psi, \overset{\circ}{\nabla}_{a_1}\psi, \dots, \overset{\circ}{\nabla}_{(a_1} \dots \overset{\circ}{\nabla}_{a_l)}\psi, \overset{\circ}{\gamma}\right)$$

But what about the background fields?

IW claim that they drop out when we demand covariance, but I disagree.

(Assumptions about) general covariance

- General covariance: Diff(M)-equivariance
- Background field: a section of a bundle with a trivial Diff(M)-action
- So by general covariance of L, we must have

$$\frac{\partial L}{\partial \overset{\circ}{\gamma}} \mathcal{L}_{\xi} \overset{\circ}{\gamma} = 0$$

for ξ the infinitesimal generator of the diffeomorphism.

• For a background field, ξ generates id; i.e., $\xi = 0$.

Step 1 summary

- The variational bicomplex allows for a bit more precision about the geometric objects involved and the role of general covariance.
- There is a simple bijective correspondence between covariant Lagrangians

$$L: JE_{g} \times_{M} JE_{\psi} \rightarrow \mathbb{R}$$

and covariant Lagrangians

$$L': JE_g \times_M JE_R \times_M JE_\psi \to \mathbb{R}$$

which factor through u.

Assuming the definition of general covariance just given, we cannot eliminate dependence on background fields.

The first law

ullet Recall that for any Lagrangian L, there are E and Θ satisfying

$$\delta L = E + d\Theta$$

- The ambiguities in E and Θ are well understood.
- E suffices to pick out the solutions to the equations of motion, but Θ is needed to characterize conserved quantities, like $\delta\Theta$ (Noether, 1918).
- IW define black hole entropy, and derive the first law, by considering a decomposition of Θ .

Θ as a current

- Consider the purely geometric sector: no matter fields, no background fields, and fix the Einstein–Hilbert Lagrangian.
- $\delta\Theta$ is a conserved current, called the Crnković–Witten current, Ashtekar–Bombelli–Koul current, or universal current.
- Pick some spatial slice Σ of M, and define

$$\omega_{\Sigma} = \int_{\Sigma} \delta\Theta$$

- On shell, ω_{Σ} depends only on the homology class of Σ .
- Alternatively: don't integrate, then $\delta\Theta$ defines a cohomology class in $H^{4+1}(M \times \mathcal{S}, \mathbb{R})$, for $\mathcal{S} \subseteq \Gamma(JE_g \times_M JE_R)$ the solution set.

Decomposing Θ

ullet Now we break the rewriting symmetry. On $JE_g \times_M JE_R$ we have

$$\delta L = E_g \, \delta g + E_R \, \delta R + d\Theta$$

ullet For a spatial slice Σ , we define

$$S_{\Sigma} = 2\pi \int_{\Sigma} E_R \, d\Sigma$$

• If ξ is a stationary Killing field, then it is also a symmetry of L. Noether's theorems give conserved charge Q in terms of $\delta\Theta$ that's closed on shell. Using ξ to decompose Q gives:

$$0 = dQ = -d\delta M + d\left(\frac{1}{4}\kappa\,\delta(E_R\,d\Sigma)\right) + d\left(\Omega\,\delta J\right)$$

• Integrating over Σ and applying Stokes' theorem gives the first law:

$$\delta M = \frac{1}{8\pi} \kappa \, \delta S_{\Sigma} + \Omega \, \delta J$$

• Takeaway: this derivation of the first law is determined by ξ , the cohomology class of Σ , and E_R .

Puzzle 1

- Q: The δ acting on M and J represents a perturbation of a quantity at spatial infinity; δA is a perturbation at the horizon. How do they relate? (Curiel 2014)
- A: Neither represent local perturbations, they are covariant perturbations integrated over space at a time. So they are global twice over: once on covariance considerations, once because they are integrals over all of space.

Puzzle 2

Q: How do the δA in the first and second laws relate?

A: A in the second law is the area of the event horizon, obtained by integrating locally over the horizon. The δ there is a finite difference, made non-negative by the local expansion parameter.

A in the first law comes about via Stokes' theorem, as we integrate a global form over a spatial slice. It requires a Killing field for the first law to obtain. It encodes cohomological data about Σ and the Killing field. It requires distinguishing between variations in g_{ab} and variations in R^a_{bcd} .

New puzzles

- What are the precise notions of locality involved in the answer to puzzle 1? Can we devise local quantities in black hole spacetimes? (Khavkine 2015)
- In drawing a substantial analogy between ordinary thermodynamics and black holes, which version of entropy should we use?

References

- Anderson, I. (1989). The Variational Bicomplex.
- Curiel, E. (2014). "Classical black holes are hot," arXiv:1408.3691.
- Iyer, V. and Wald, R. M. (1994). "Some properties of the Noether charge and a proposal for dynamical black hole entropy," Phys. Rev. D 50:846–864.
- Khavkine, I. (2015). "Local and gauge invariant observables in gravity," arXiv:1503.03754.
- Zuckerman, G. J. (1987). "Action principles and global geometry," in *Mathematical Aspects of String Theory*, ed. S. T. Yau. Singapore: World Scientific.