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Classical and Quantum Problems of Time

That the (canonical) quantization of general
relativity leads to a timeless formalism should be
understood as a consequence of an incorrect
treatment of the temporal symmetries of the
classical theory. By treating local temporal
labellings as entirely unphysical, and change as
entirely relational, we do not retain in the
quantum formalism the full classical dynamics or
the implicit temporal-ordering structure.

(Gryb and Thébault, 2015, 5)

• “Orthodoxy” is wrong, but

• Does canonical quantisation rely on it?

• Is the Wheeler–DeWitt equation
fundamentally timeless?
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Unconstrained Hamiltonian Dynamics

In the Lagrangian formalism, physical histories
correspond to stationary curves:

S = ∫ dt L(q, q̇), δS = 0.

The Legendre transformation:

pi ∶=
∂L

∂q̇ i
maps TQ→ T∗Q.

Defining: H(p, q) ∶= ∑i p
i q̇ i − L(q, q̇) gives

Hamilton’s equations:

q̇ i =
∂H

∂pi
; ṗi = −

∂H

∂q i
.
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The Geometrical Perspective

T∗Q is a symplectic manifold (M ,ω). Its structure can be used to define
the Poisson Bracket:

{ f , g} ∶= ω(X f , Xg) = (
∂ f

∂q i

∂g

∂pi
−

∂ f

∂pi
∂g

∂q i
)

where
X f satisfies ω(X f , ⋅) = d f .

Phase space curves represent physically possible histories iff they are the
integral curves of XH , where ω(XH , ⋅) = dH.
The evolution of an arbitrary quantity, f , is given by:

ḟ = { f ,H}.
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Gauge and Constrained Hamiltonian Dynamics

If the Lagrangian is (quasi-)invariant under the action of a group
parametrized by arbitrary functions of the independent variables:

• identities hold between the Euler-Lagrange expressions
d
dt

( ∂L
∂q̇ i

) − ∂L
∂q i

(Noether’s 2nd theorem)

• apparent indeterminism

• the pi are not independent but must satisfy “primary” constraints
ϕn(p, q) = 0, so

• the Legendre transformation is many-one.

• The Hamiltonian dynamics lives on a proper subspace of T∗Q, the
“constraint surface”, defined by ϕn(p, q) = 0 (and any secondary
constraints).
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Dirac’s Analysis

Dirac showed that the equations of motion can be given the following
form:

ḟ = { f ,HT} ≈ { f ,H0} + ua
{ f , ϕa}

where the total Hamiltonian, HT is given by:

HT(p, q, t) = H0(p, q) + ua
(p, q, t)ϕa(p, q)

and the ϕa are now the first class constraints

• {ϕa ,ψα} ≈ 0 for all constraints ψα

• “≈” denotes equality on the constraint surface (“weak equality”)

Note, the ua are arbitrary functions of time.
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Apparent Indeterminism



The Orthodox Interpretation

The first class constraints partition the constraint surface into “gauge”
orbits.

Determinism is restored if one views:

• points on the same gauge orbit as physically equivalent

• only functions constant on gauge orbits as physical quantities

In a slogan:

First class constraints generate gauge transformations.

Geometrical interpretation

The symplectic form ω on T∗Q induces a presymplectic form, σ , on the
constraint surface. Points lie on the same gauge orbit iff they are
connected by a curve whose target vector X everywhere satisfies
σ(X , ⋅) = 0.
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Expressions of Orthodoxy

P. A. M. Dirac, who was responsible for developing the constrained
Hamiltonian formalism, proposed that the gauge transformations be
identified as the transformations generated by the first class constraints,
where the intended interpretation is that two points of phase space
which are connected by a gauge transformation are to be regarded as
representing the same physical state. (Earman, 2002, 8)
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P. A. M. Dirac, who was responsible for developing the constrained
Hamiltonian formalism, proposed that the gauge transformations be
identified as the transformations generated by the first class constraints,
where the intended interpretation is that two points of phase space
which are connected by a gauge transformation are to be regarded as
representing the same physical state. (Earman, 2002, 8)
The Assumption: [T]he results of observations and measurements must
be expressed by the values of observables. (Earman, 2002, 12)



Expressions of Orthodoxy

Because of the arbitrariness of the functions λ j in the Hamiltonian
H = h +∑

n
j=1 λ jC j , the dynamics of the system cannot be unique. To

account for this non-uniqueness one postulates that different phase
space points x1 , x2 describe the same physical state if they are
connected by a gauge transformation.
Here a gauge transformation is a transformation which is generated by
the constraints C j . (Dittrich, 2007, 1894)



The Problem of Time

This leads to the (classical) Problem of Time
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Challenge 1

Pitts, J. B. (2014). “A first class
constraint generates not a gauge
transformation, but a bad physical
change: The case of
electromagnetism.” Annals of
Physics 351, 384–406.



Hamiltonian Electromagnetism

• L = − 14FµνF
µν

• Hc = ∫ dx[ 12 (π⃗2 + B⃗2) + π⃗ ⋅ ∇A0]

πµ are the variables canonically conjugate to Aµ . Defined in terms of the
Lagrangian, πµ = −F0µ , so:

• π⃗ is the electric field, and

• π0 ≈ 0 is a primary constraint.

Stability of this constraint under the Hamiltonian dynamics leads to a
secondary constraint:

• π̇0 = {π0 ,Hc} = ∇ ⋅ π⃗ ≈ 0.

Both constraints are first class.



Pitts (2014) FCCs Generate Bad Physical Changes

The πµ are left unchanged.

Transformations generated by π0

δAµ(x) = {Aµ(x),∫ d3 yπ0ξ(t, y)} = δ0µ ξ(t, x), so

δFµν = ∂µ ξδ0ν − ∂ν ξδ0µ , and so

δF0n = −δE⃗ = −∂n ξ.

In general ∇ ⋅ E⃗ = 0↦ ∇ ⋅ E⃗ +∇2ξ ≠ 0.

Transformations generated by ∇ ⋅ π⃗

δAµ(x) = {Aµ(x),∫ d3 yπ i
, iє(t, y)} = −δ i

µ

∂

∂x i
є(t, x), leading to

δF0n = −δE⃗ = −∂n∂0є; ∇ ⋅ E⃗ ↦ ∇ ⋅ E⃗ +∇2є̇.
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Recovering the “Gauge Generator”

In general:

δAµ(x) = {Aµ(x),∫ d3 y[π0ξ(t, y) + π i
, iє(t, y)]} = δ0µ ξ − δ i

µ

∂

∂x i
є,

which leads to:
δF0n = −δE⃗ = −∂n ξ − ∂n∂0є.

One obtains δF0n = 0 by setting ξ = −є̇.
This is the form taken in electromagnetism of the “gauge generator”,
discussed in the work of Castellani, and Pons, Shepley and Salisbury.
One has, for G = ∫ d3x(π i

, iє − π0є̇):

δAµ = {Aµ ,G} = −δµє.

Does this undermine orthodoxy?
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Orthodoxy Unscathed



Challenge 2

Barbour, Julian, and Brendan Z. Foster. “Constraints and gauge
transformations: Dirac’s theorem is not always valid.” arXiv preprint
arXiv:0808.1223 (2008).



Dirac’s Argument

Consider the infinitesimal change in some quantity g after a short time
δt.

g(δt) = g0 + ġδt

= g0 + {g ,HT}δt

= g0 + δt({g ,HF
} + va{g , γa})

But the v’s are arbitrary. With different functions v′ we get different
g(δt)’s, where:

∆g(δt) = δt(va − v′a){g , γa},

= єa{g , γa}, with

єa = δt(va − v′a).
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= g0 + {g ,HT}δt

= g0 + δt({g ,HF
} + va{g , γa})

But the v’s are arbitrary. With different functions v′ we get different
g(δt)’s, where:

∆g(δt) = δt(va − v′a){g , γa},

= єa{g , γa}, with

єa = δt(va − v′a).



Dirac’s Argument



Varieties of Gauge Redundancy
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Reparameterization Invariance



Moral: one need not identify “gauge-related” points

Finally, a word of caution. The arguments leading to the identification of
[the first class constraints] as generators of transformations that do not
change the physical state at a given time implicitly assume that the time
t. . . is observable. That is information brought in from the outside. One
may also take the point of view that some of the gauge arbitrariness
indicates that the time itself is not observable. This is done in so-called
generally covariant theories. . . One of the arbitrary functions is then
associated with reparametrizations t → f (t) of the time variable.

(Henneaux and Teitelboim, 1992, 18-9)
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A Simple Reparamatrization Invariant Theory

Jacobi’s Principle:

IJ = ∫
B

A
LJ = 2∫

B

A
dλ

√
(E − V)T

The Hamiltonian is given by:

H = ∑
i

pi ⋅ q̇i − LJ = Nh, where

N =

√
T

E − V
and h =

1
2∑i

pi ⋅ pi + V − E

Given the definition of pi ,

pi = q̇i/N h ≈ 0

h is a primary first-class constraint.



A Simple Reparamatrization Invariant Theory

• Dynamical trajectories are integral curves
of Xh , where σ(Xh , ⋅) = dh, but h ≈ 0.

• Xh does two things:
▸ defines a path in I
▸ provides a parameterization.

• Distinct Xh define the same paths.

• There is no apparent indeterminism at the
level of paths

▸ No gauge redundancy in functions on
phase space.

• Only the evolution of such quantities as
functions of parameter time is
undetermined.
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Types of Gauge Transformation: Recap

• Maps from points to physically equivalent points

• Maps that leave images of solution curves invariant but change the
paramaterization

There is no pressure (from the requirement of determinism) to require
that genuine physical magnitudes weakly commute with the constraints
that generate the latter.

Unfortunately there can be a third type of gauge redundancy: maps that
map paths to distinct, but physically equivalent, paths without mapping
points to physically distinct points.

The problem of refoliation invariance.
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The Block Universe



The Wheeler–DeWitt Equation

• Apply Dirac constraint quantization (as summarised by Pashby) to
GR

• Physical states are those invariant under transformations generated
by the quantum constraints.

• Which notion of gauge does this presuppose?

• The result. . .
H∣Ψ⟩ = 0

What’s wrong with a naively temporal (Everettian) understanding of
transition probabilities between components of ∣Ψ⟩?
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The Proposal

it has been claimed that although the problem of time in GTR is not a
pseudo-problem, neither is it intractable since common sense B-series
change can be described in terms of the time independent correlations
between gauge dependent quantities which change with time. (Earman,
2002, 15)



Earman on Coincidence Quantities

it remains a bit obscure how the value of this coincidence observable is
measured. For if the parametrized description is taken seriously, the
measuring procedure cannot work by verifying that the coincidence of
values described in the equation for X ȳ does in fact take place by
separately measuring the values of the clock variable and the oscillator
position and then checking for the coincidence. (Earman, 2002, 13)



Against the Proposal

The problem is that all of our observations must be expressed in terms
of the physically measurable quantities of the theory, namely those
combinations of the dynamic variables which are [gauge invariant and
therefore] independent of time. One cannot try to phrase the problem
by saying that one measures the gauge dependent variables, and then
looks for time independent correlations between them, since the gauge
dependent variables are not measurable quantities within the context of
the theory. (Unruh, 1991, 266)
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