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G. 't Hooft, “Quantum gravity: a fundamental problem and some radical ideas", T. :
ime as Unfolding

in Recent developments in gravitation, Cargése Summer School Lectures 1978 of (a Quantum)

. . . . . . Process

m take lattice discretization seriously, as model for gravity ;

m metric tensor difficult to define on lattice, while respecting covariance (2U5HEE

m simpler, invariant concept: causal ordering

m in discrete language, partial ordering

m this partial order defines the lattice Frelminries

m consistency with causal ordering of continuum defines correspondence

between discrete and continuum

m proposes that the early universe will emerge from a single discrete
element, followed by a tree

0
Fig. 10 The Cosmic Tree.



Taketani stages of theory construction

phenomenology > kinematics

what should phenomena theory explain? substance of theory:
"what really exists?"

o perihelion precession of Mercury o spacetime manifold

o (deflection of light by the Sun)

® Einstein’s equations

Aristotelian "gravity”

Galilean *gravity’
. Special Relativity
dynamics

General Relativity

"equations of motion for substance" Quantum Gravity
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Time as Unfolding

Causal Sets: Fundamentally Discrete Gravity o ( Guarum)
Based upon two main observations:
m Richness of causal structure
m Need for discreteness

D Rideout

Definitions

Properties of discrete causal order <:

m irreflexive (x 4 x)
m transitive (rt <y and y<z=1x<2)
m locally finite (|{y|z < y < z| < ) I

Some definitions: ———

m relation & link

m chain & antichain, height & width
m causal interval or order interval
m maximal & minimal elements

%



Time as Unfolding

Spacetime Manifold as Emergent Structure of (a Guantur)

. . . Process
The continuum approximation Y
m Embedding — order preserving map ¢ : C — (M, g)
T <y ox) <oy) Yo,y el

m Faithful embedding (‘Sprinkling’): Gorespendsnce vt
m “preserves number — volume correspondence” o
m Spacetime does not possess structure at scales
smaller than discreteness scale B
m 3 faithfu (M, g) approximates C

Sequential Growth

Dynamics
T + v e + 1
L + %%+ + NN < Transitive Percolation
. x Originary Percolation
. P . P
r X L 4 Network Science
. R + P
[+ . © e . + ]
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L e Markov Chain Monte Carlo
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Clock Time: Timelike Distance TZ?T{S&”J?J?A?Q

D Rideout

Timelike geodesic is extremal chronological curve ok Time
Lorentzian signature — longest curve

Length L of longest chain between z and y

d(z,y) ==L



Clock Time: Timelike Distance
Length L of longest chain between z and y

d(z,y):=1L
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Clock Time: Timelike Distance
Length L of longest chain between z and y

d(z,y):=1L

Brightwell & Gregory (Phys. Rev. Lett. 66: 260-263
(1991)) state:

L(pV)™ Y% = mg as pV — oo
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What do we mean by Dynamics? 7ot (s Quantum)”
Process
m Hamiltonian evolution D Rideout
m Lagrangian ~- Action

m Sum over histories

Classical:
P(E) =" p()

yeE

What is Dynamics?

Quantum:
A(y) = S()/h

PE)=Y 1 > AW

9 yeEn(T)=q

m Quantum Measure
P(E) = D(E,E)

D(E,Ey) =" 3 COSOIIs(y(T), (1))
YEE1 Y EE2



Simplest Dynamical Law: ‘“Typical’ Objects
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Simplest Dynamical Law: ‘“Typical’ Objects

Sequence of many coin flips.

Which is the ‘typical’ sequence?
HTHHHHTTHHTHTHHTTTTTHTHHTTTHHHHTTTHHHTH
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
THTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHTHT
HTHTTHTTTHTTTTHTTTTTHTTTTTTHTTTTTTTHTTT
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Typical Graphs
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Typical Causal Sets




‘Entropy Crisis:’ Dynamical Emergence of the
Continuum

time

oNInN continuua vs. 2V?/4 Kleitman-Rothschild orders
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Sequential Growth Dynamics
DR, R Sorkin

Grow causal set, ‘one element at a time’, beginning with empty set
Stochastic (Markov) process
Probabilities based upon three principles

m ‘Internal temporality’ (Causet grows only to the future)

m Discrete general covariance

m Bell causality
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Sequential Growth Dynamics

DR, R Sorkin
Grow causal set, ‘one element at a time’, beginning with empty set

Stochastic (Markov) process

Probabilities based upon three principles
m ‘Internal temporality’ (Causet grows only to the future)
m Discrete general covariance
m Bell causality

The poset of finite causal sets

Time as Unfolding
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Sequential Growth Dynamics ey
DR, R Sorkin o

Uniform [

Sequential Growth
Dynamics

The poset of finite causal sets

~ w—m Net ,‘u’i ,‘,e: -
PI‘(Cn — Cn-‘,—l) 0.8 kz_o ( k )tk+m

m Infinite sequence of free parameters (‘coupling constants’)
tn Z 0 ,;""r'; ymptoti

n Stz 21
m ‘Transitive percolation’ dynamics t,, = (&) oo
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Time as Unfolding of (a Quantum) Process: T‘S?T{éu“:nf?u"ii?g
Results
‘Pre-Quantum’ :
m Cyclic cosmology with evolving ‘coupling constants’
m Gives rise to deSitter like early universe

m Gives rise to ‘internal time’ within Complex Networks
(e.g. Internet)

Quantum :

D Rideout

m When do the Kleitman-Rothschild causets dominate?  Rresuns
(in volume-time, n)

m Are almost all histories roughly time-reversal
symmetric?

m |s the dynamics able to escape from the
Kleitman-Rothschild super-exponential dominance?

m |s there current observational evidence hinting at
quantum cosmology of this form?



Structure of Transitive Percolation

m Completely homogeneous : future of an element is
independent of anything spacelike to it

m Due to random fluctuations, however, appears
inhomogeneous in time

"post"

0

m ‘Originary’ dynamics subsequent to post : Each
newborn element must connect to at least one other
element

m Universe expands to volume ~ 1/p

Time as Unfolding
of (a Quantum)
Process

D Rideout

Transitive Percolation



Cosmic Renormalization i
Process

D Rideout
m Growth dynamics formally Markovian,

because entire past history is taken as
current state, however has long memory

m ‘Cosmic renormalization’:
Can describe growth of subsequent cycles
as new (originary) dynamics, with
renormalized parameters (¢,,)
m Transitive percolation is unique fixed point
of cosmic renormalization

m Attractive fixed point, no cycles (pointwise /)
convergence)

m Known that ¢, = (a/Inn)", a > 72/6
contains infinite number of posts.

(Denjoe O’Connor, Xavier Martin, DR, Rafael Sorkin)
(Avner Ash, Patrick McDonald, Graham Brightwell)



Originary Percolation o

Process

Random tree era ;
D Rideout

m limitp <« 1
m originary — each elt chooses exactly one ancestor
~ simple model of random tree

m exponential expansion

m future of every element itself originary percolation
= causal set is 0+1 dimensional at smallest Orgnry Percottion
scales

m not exactly spacetime manifold of GR



Originary Percolation

N =16,p=0.2
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Early Universe of Growth Dynamics

1000 | + 7
. ==
; f
4 o 4
~4 3 =
44 4 J// 4
N 100 |

max Ny + 1

{=6.81+.72
m = 1.926 £ .023

M. Ahmed and DR, Phys.Rev.D 81, 083528 (2010)
arXiv:0909.4771 [gr-qc]

35



Network Science
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Network Cosmology

Dmitri Krioukov', Maksim Kitsak', Robert 5. Sinkovits?, David Rideout?, David Meyer® & Maridn Boguia*

| Cooperativa Assaciction for Infernet Data Anclysis (CAIDA), University of California, San Diego (UCSD), La Jolla, CA 92093, USA,
?5an Diego Supercomputer Center [SDSC], University of California, San Diego (UCSD), La Jolla, CA 92093, USA, *Depariment of
Mathematics, University of California, San Diego (UCSD], Lo Jolla, CA 92093, USA, “Departoment da Fisica Fanamental,
Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain.

Prediction and control of the dynamics of complex networks is a central problem in network science.
Structural and dynamical similaritics of different real networks suggest that some universal laws might
accurately describe the dynamics of these networks, albeit the nature and common origin of such laws
remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in
our accelerating universe is a power-law graph with strong clustering, similar to many complex networks
such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence
of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal
networks. This lence suggests that dly similar laws govern the dynamics of complex
networks and spacetime in the universe, with implications to network science and cosmology.

™) hysics explains complex phenomena in nature by reducing them toan interplay of simple fundamental laws,
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Network Science
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Quantum Causal Set Dynamics via Action Integral
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Path Integral for Gravity o

Process

D Rideout
m Lorentzian functional integral for gravity
7 _ / ¢iSEnl(M.9)]/h
(M.g)
m Lorentzian ‘path’ sum over causal sets
7 — Z etSeu(Cl/h
c
m Restrict sum to fixed (finite) cardinality Ty ——
— Fixed spacetime volume ~ unimodular gravity s

m Need expression for Sg[C]



Discrete [J: Towards an Expression for Sgy[C]
m Discrete D’Alembertian operator (R. Sorkin)

0@ (z) = % _%¢($) Y 2> +> | e

yelq yELs y€ELs

where
Li={yeCly<z and Ny(y,z)=1i— 1}




Discrete [J: Towards an Expression for Sgy[C]
m Discrete D’Alembertian operator (R. Sorkin)

m In 4d: (Benincasa-Dowker)

O®¢(z) = \/;fgz (qf)(:v) + (Z —9) 416 ) -8 Z) qb(y))

yeLly y€L2 y€EL3 y€Ls



High density ¢ — 0 limit

>



High density ¢ — 0 limit

B o* x|



Einstein-Hilbert action for Causal Sets
(Benincasa-Dowker PRL Jan 2010))

m In curved spacetime:

iy Vo)) = (0= 4 ) oo

£—0

m ¥ (-2) gives Ricci scalar
m Use to write Einstein-Hilbert action for causal set

SEN[C] = O(1)(N(C)= N1 (C)+9N(C) ~16N3(C) +8N4(C))

where N;(C) = |{z,y € C|Ny(z,y) =i — 1}
m Expression for path sum for causal sets, appropriate
to 4d:

7 — Z elﬁ(N C)+9N2(C)—16N3(C)+8N4(C))

cec



Einstein-Hilbert action for Causal Sets
(Benincasa & Dowker PRL Jan 2010)

m Expression for (4d) path sum for causal sets:

7 — Z eSun(Cl/h Z 625 C)+9N2(C)—16N3(C)+8N4(C))
ceC ceC
// \ N
N1 =6
Ny =

\ ponn



Generalized ‘Wick Rotation’ Tt Sty
Process

D Rideout

m Usual approach is to perform Wick rotation ¢ — it

m Alternative: Analytically continue coefficient B if
Casts sum into thermodynamic partition function

7 — Z e—ﬁ(N(C)—Nl(C)+9N2(O)—16N3(C)+8N4(C))
ceC

m ~ ‘Euclidean’ sum, can be analyzed numerically
using Metropolis Monte Carlo techniques Quantum Causal

Set Dynamics via
Action Integral



Markov Chain Monte Carlo on Causal Sets
(J. Henson, DR, R. Sorkin, S. Surya)

m Markov Chain: random walk on set of ‘states’,
governed by mixing matrix M
m Theorem: If M satisfies
m Ergodicity
m Detailed balance
Pr(Cl)Pr(Cl — CQ) = PI‘(CQ)PI‘(CQ — Cl)

then, independently of initial state, at late times
probability to visit state C' is Pr(C)

m Metropolis Monte Carlo over (naturally labeled)
partial orders (z <y = z <)

m Found two moves which satisfy these conditions
— Use uniform mixture of two moves

m Transitivity — must enforce non-local constraint on
relations

m Define linkz <y:z <yand {z|lz <z <y} =0

Time as Unfolding
of (a Quantum)
Process

D Rideout
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Relation Move

| AN
y S

m |f x < y: Remove single relation
<y

m If z Ay and form critical pair
(past(z) C past(y) and
fut(y) C fut(x)):
Insert single relation = < y

m Else do nothing
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of (a Quantum)
Process

D Rideout
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H Time as Unfolding
Ll n k M OVG of (a Quantum)
Process

D Rideout

f
|

|
S
! @&
0
m If z <. Remove all relations from Q
incpast(x) to incfut(y), \
save those required by transitivity |
via other elements °
m If 2 £y, and 7 links from incpast(z)
to incfut(y):
Insert all relations from incpast(x) o
to incfut(y)

m Else do nothing

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders



H H Time as Unfolding
h _> 0 lelt of (a Quantum)

Process

B /i— oo = (=0~ Uniform measure on sample D Rideout
space

m Causal sets on up to 16 elements enumerated
explicitly

m Kleitman-Rothschild theorem (Trans. AMS 1975)

m Non-locality / long range interaction ~ How big is big?

In the remainder of this paper we will adopt
the convention that any inequality or other
Statement about functions of n will be
meant to be true only for all n sufficiently
large, where how large depends on the
statement. This will be a convenience since
there are so many such statements below.

Results



Height distribution for n <9

fraction of n-orders
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Height distribution for n < 82

fraction of n-orders
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Height distribution for n < 82 (logscale)

fraction of n-orders
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Mean height for n < 82
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Cardinality of Level 2

fraction of n-orders
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Time as Unfolding

Number of minimal and maximal elements of (2 Quantum)

Process
D Rideout
0.07 0
>‘< |min| —+——
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|max| - |min| +——— Preliminaries
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Ordering Fraction
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Mean ordering fraction for n < 82
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Escape from KR orders

fraction of 64-orders
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Tension with ACDM Concordance Model

“Current measurements of the low and high
redshift Universe are in tension if we restrict
ourselves to the standard six parameter model
of flat A\CDM.”

[Wymann, Rudd, Vanderveld, Hu, arXiv:1307.77152
(2 Jan 2014)]
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Tension with ACDM Concordance Model e

Process

pa(2) D Rideout
pa (0)

st

: Fl [ ‘Y 145 JH/{/ 10 15 20 e

_2F

[I. Jubb, F. Dowker, private communication, based on
arXiv:1407.5405 [gr-qc]]

Observational Cosmology
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Time as Unfolding of (a Quantum) Process Tt uantom”
‘Pre-Quantum’ : e
m Cyclic cosmology with evolving ‘coupling constants’
m Gives rise to deSitter like early universe

m Gives rise to ‘internal time’ within Complex Networks
(e.g. Internet)

Quantum :

D Rideout

m When do the Kleitman-Rothschild causets dominate?
(in volume-time, n) ~~ For some n > 100 perhaps.

m Are almost all histories roughly time-reversal
symmetric? ~~ No!

m Is the dynamics able to escape from the
Kleitman-Rothschild super-exponential dominance?
~ Yes!

m |s there current observational evidence hinting at
quantum cosmology of this form? ~~ Perhaps!

Summary and
Conclusions



Escape from KR orders
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