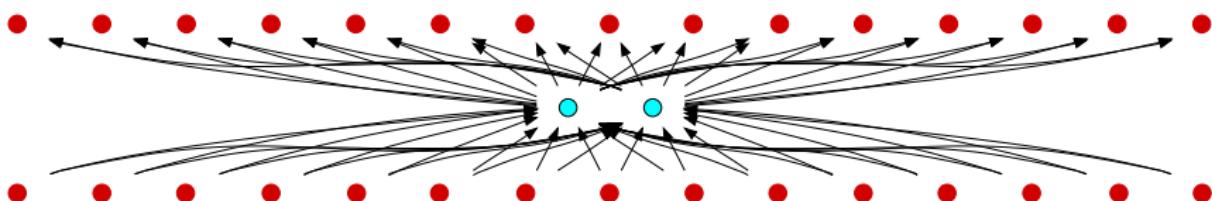


Time as Unfolding of Process

David Rideout

Department of Mathematics
University of California, San Diego

Time in Quantum Gravity 13 March 2015



Time as Unfolding of (a Quantum) Process

David Rideout

Department of Mathematics
University of California, San Diego

Time in Quantum Gravity 13 March 2015

Plan of this Talk

- 1 Introduction to Causal Sets
- 2 Dynamics of Causal Sets
- 3 Results
- 4 Quantum Causal Set Dynamics via Action Integral
- 5 Summary and Conclusions

Outline

Time as Unfolding
of (a Quantum)
Process

D Rideout

1 Introduction to Causal Sets

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

2 Dynamics of Causal Sets

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

3 Results

Results

Transitive Percolation

Originary Percolation

Network Science

4 Quantum Causal Set Dynamics via Action Integral

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

5 Summary and Conclusions

Summary and
Conclusions

- take lattice discretization seriously, as model for gravity
- metric tensor difficult to define on lattice, while respecting covariance
- simpler, invariant concept: causal ordering
- in discrete language, partial ordering
- this partial order *defines* the lattice
- consistency with causal ordering of continuum defines correspondence between discrete and continuum
- proposes that the early universe will emerge from a single discrete element, followed by a tree

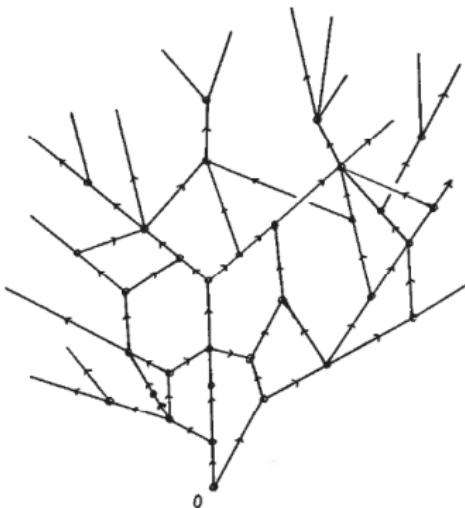


Fig. 10 The Cosmic Tree.

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

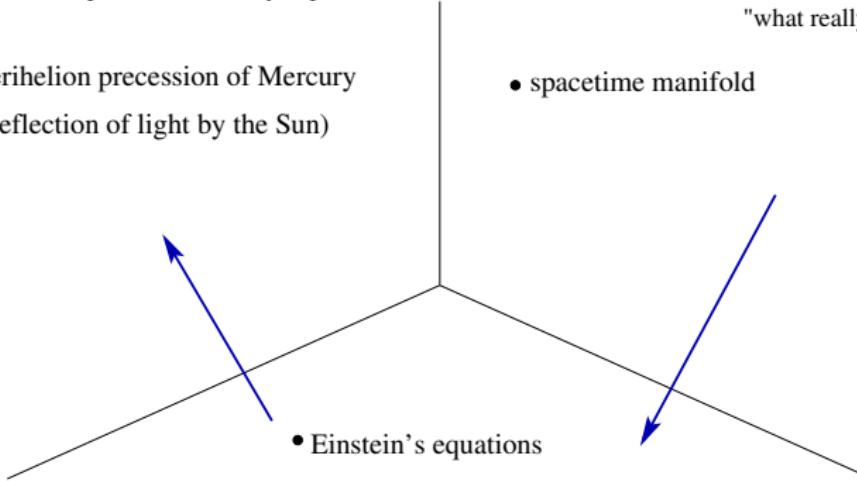
Summary and
Conclusions

Taketani stages of theory construction

Time as Unfolding
of (a Quantum)
Process

D Rideout

phenomenology


what should phenomena theory explain?

- perihelion precession of Mercury
- (deflection of light by the Sun)

kinematics

substance of theory:
"what really exists?"

- spacetime manifold

dynamics

"equations of motion for substance"

Aristotelian 'gravity'
Galilean 'gravity'
Special Relativity
General Relativity
Quantum Gravity

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

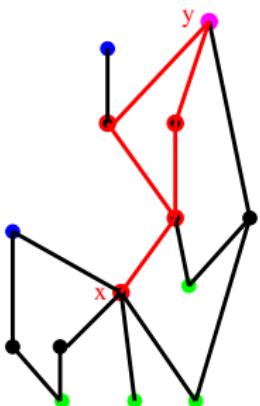
Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

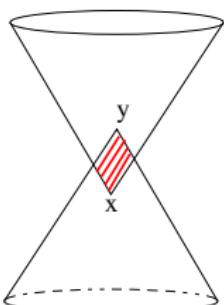
Summary and
Conclusions


Causal Sets: Fundamentally Discrete Gravity

Based upon two main observations:

- Richness of causal structure
- Need for discreteness

Properties of discrete causal order \prec :


- irreflexive ($x \not\prec x$)
- transitive ($x \prec y$ and $y \prec z \Rightarrow x \prec z$)
- locally finite ($|\{y|x \prec y \prec z\}| < \infty$)

Some definitions:

- relation & link
- chain & antichain, height & width
- causal interval or order interval
- maximal & minimal elements

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

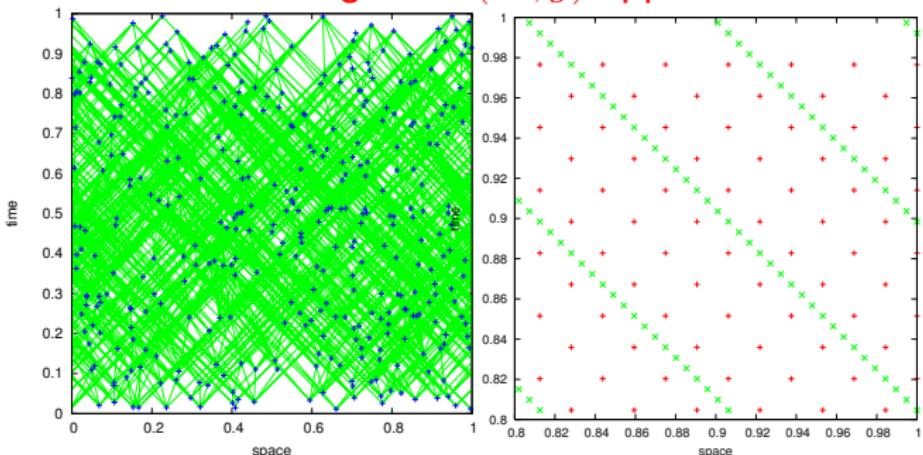
Finite β

Observational Cosmology

Summary and
Conclusions

Spacetime Manifold as Emergent Structure

The continuum approximation


- *Embedding* – order preserving map $\phi : \mathcal{C} \rightarrow (M, g)$

$$x \prec y \Leftrightarrow \phi(x) \prec \phi(y) \quad \forall x, y \in \mathcal{C}$$

- *Faithful embedding* ('Sprinkling'):

- "preserves number – volume correspondence"
- Spacetime does not possess structure at scales smaller than discreteness scale

- \exists faithful embedding $\implies (M, g)$ approximates \mathcal{C}

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

Summary and
Conclusions

Clock Time: Timelike Distance

Time as Unfolding
of (a Quantum)
Process

D Rideout

Timelike geodesic is extremal chronological curve

Lorentzian signature \implies *longest* curve

Length L of *longest* chain between x and y

$$d(x, y) := L$$

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Clock Time: Timelike Distance

Length L of *longest* chain between x and y

Time as Unfolding
of (a Quantum)
Process
D Rideout

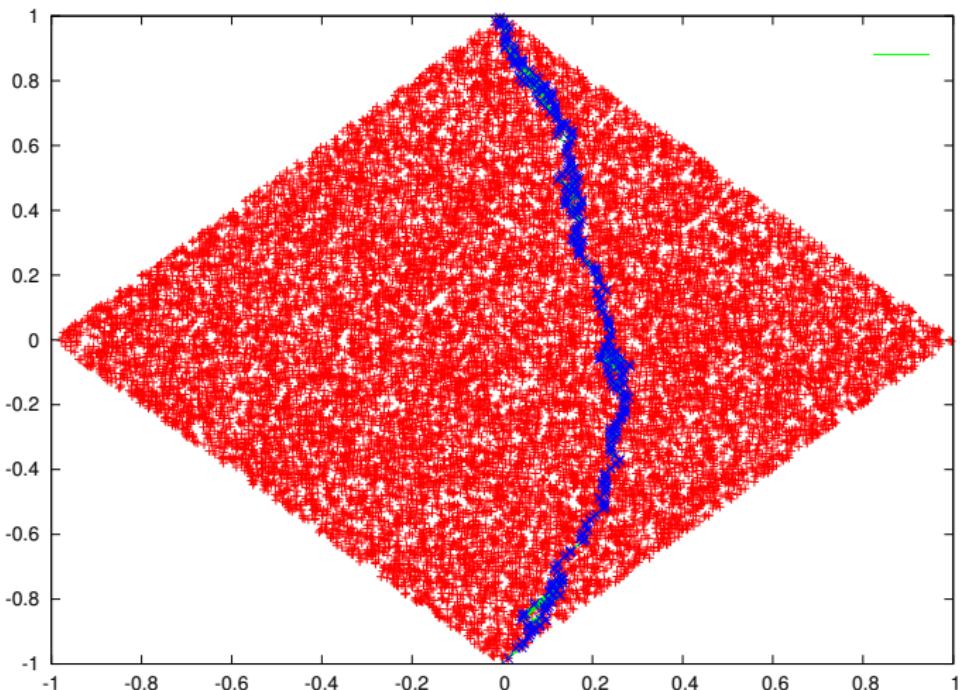
Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results


Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

$$d(x, y) := L$$

Clock Time: Timelike Distance

Length L of *longest* chain between x and y

Time as Unfolding
of (a Quantum)
Process
D Rideout

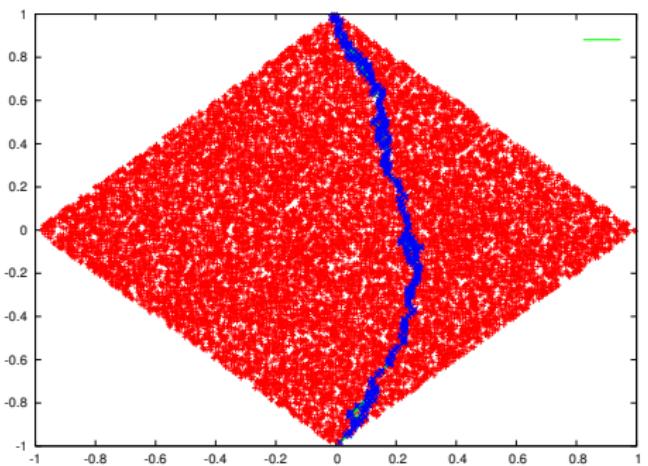
Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results


Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

$$d(x, y) := L$$

Brightwell & Gregory (Phys. Rev. Lett. 66: 260-263 (1991)) state:

$$L(\rho V)^{-1/d} \rightarrow m_d \text{ as } \rho V \rightarrow \infty$$

Outline

Time as Unfolding
of (a Quantum)
Process

D Rideout

1 Introduction to Causal Sets

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

2 Dynamics of Causal Sets

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

3 Results

Results

Transitive Percolation

Originary Percolation

Network Science

4 Quantum Causal Set Dynamics via Action Integral

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

5 Summary and Conclusions

Summary and
Conclusions

What do we mean by Dynamics?

- Hamiltonian evolution
- Lagrangian \rightsquigarrow Action
- Sum over histories

Classical:

$$P(E) = \sum_{\gamma \in E} p(\gamma)$$

Quantum:

$$A(\gamma) = e^{iS(\gamma)/\hbar}$$

$$P(E) = \sum_q \left| \sum_{\gamma \in E; \gamma(T)=q} A(\gamma) \right|^2$$

- Quantum Measure

$$P(E) = D(E, E)$$

$$D(E_1, E_2) = \left\langle \sum_{\gamma \in E_1, \gamma' \in E_2} e^{i(S(\gamma) - S(\gamma'))/\hbar} \delta(\gamma(T), \gamma'(T)) \right\rangle$$

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Simplest Dynamical Law: ‘Typical’ Objects

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and Conclusions

Simplest Dynamical Law: 'Typical' Objects

Time as Unfolding
of (a Quantum)
Process

D Rideout

Sequence of many coin flips.
Which is the 'typical' sequence?

- 1 HTHHHHTTHHTHHTHHTTTTHTHHTTTTHHHHTTTHHHHTH
- 2 HHH
- 3 THT
- 4 HTHTTHTTTHTTTHTTTTHTTTTHTTTTHTTTTHTTTTHTTT

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

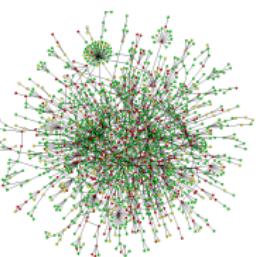
Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral


Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Typical Graphs

Time as Unfolding
of (a Quantum)
Process

D Rideout

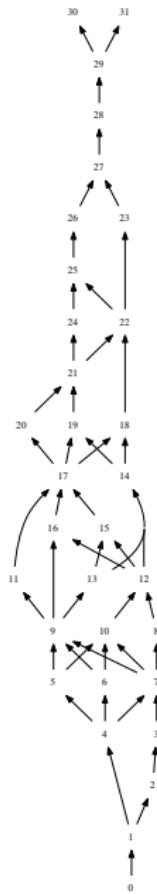
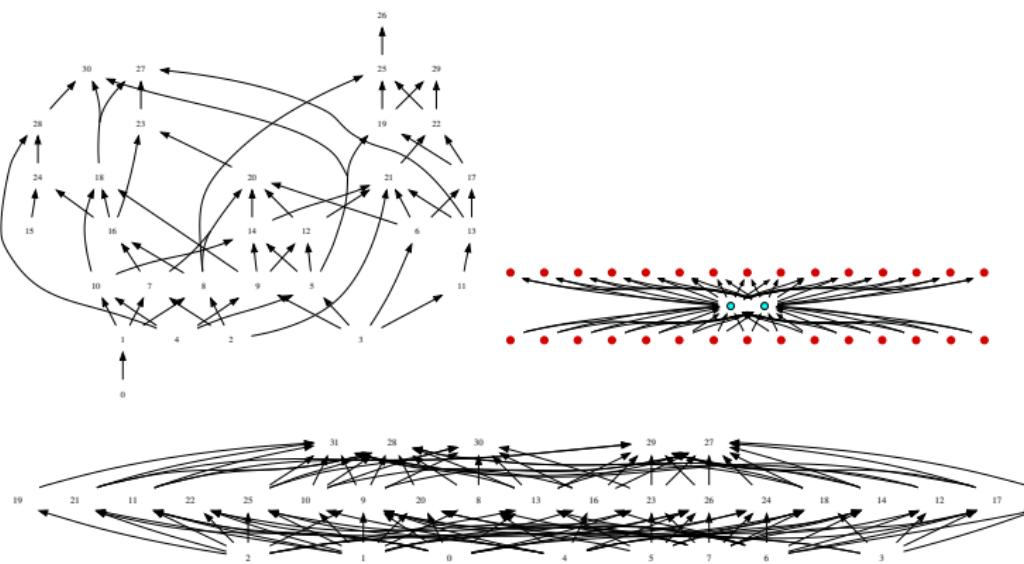
Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with Continuum
Clock Time

Dynamics of Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth Dynamics

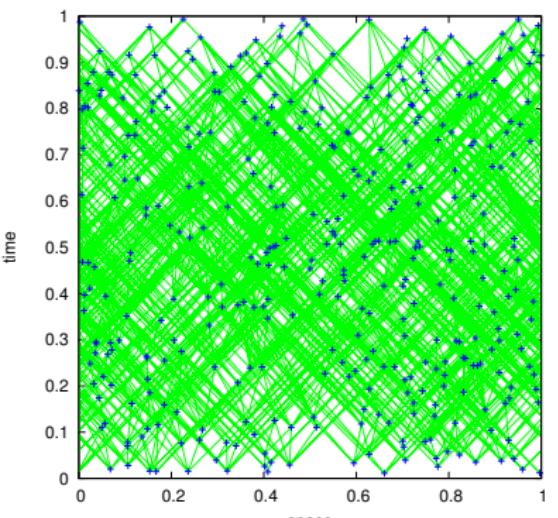
Results



Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo on Causal Sets / Partial Orders
Results
Onset of Asymptotic Regime
Finite β
Observational Cosmology

Summary and Conclusions


Typical Causal Sets

'Entropy Crisis:' Dynamical Emergence of the Continuum

Time as Unfolding
of (a Quantum)
Process

D Rideout

$2^{N \ln N}$ continua vs. $2^{N^2/4}$ Kleitman-Rothschild orders

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Sequential Growth Dynamics

DR, R Sorkin

Time as Unfolding
of (a Quantum)
Process

D Rideout

Grow causal set, 'one element at a time', beginning with empty set
Stochastic (Markov) process
Probabilities based upon three principles

- 'Internal temporality' (Causet grows only to the future)
- Discrete general covariance
- Bell causality

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

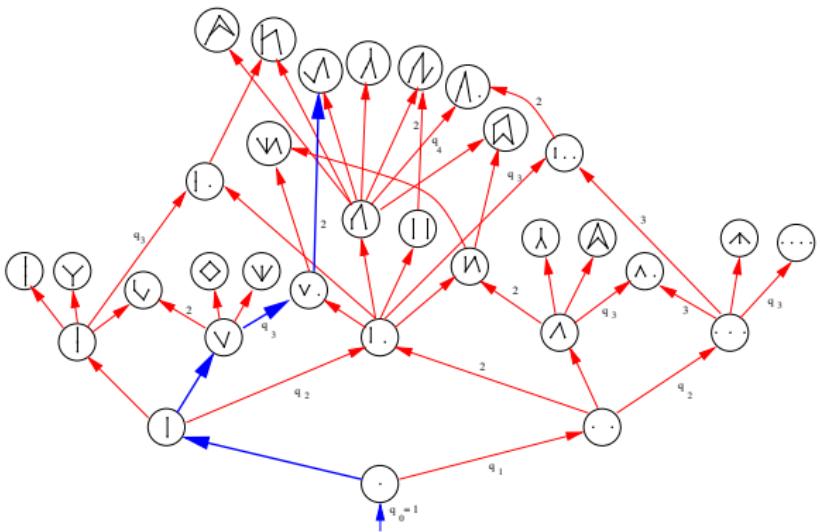
Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Sequential Growth Dynamics


DR, R Sorkin

Grow causal set, 'one element at a time', beginning with empty set

Stochastic (Markov) process

Probabilities based upon three principles

- 'Internal temporality' (Causet grows only to the future)
- Discrete general covariance
- Bell causality

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

Summary and
Conclusions

Sequential Growth Dynamics

DR, R Sorkin

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

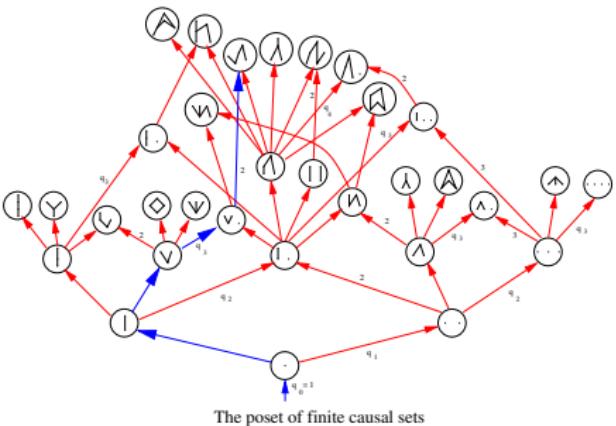
Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal
Set Dynamics via
Action Integral


Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

The poset of finite causal sets

$$\Pr(C_n \rightarrow C_{n+1}) \propto \sum_{k=0}^{\varpi-m} \binom{\varpi-m}{k} t_{k+m}$$

- Infinite sequence of free parameters ('coupling constants')
 $t_n \geq 0$
- 'Transitive percolation' dynamics $t_n = \left(\frac{p}{1-p}\right)^n$

Summary and
Conclusions

Outline

Time as Unfolding
of (a Quantum)
Process

D Rideout

1 Introduction to Causal Sets

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

2 Dynamics of Causal Sets

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

3 Results

Results

Transitive Percolation

Originary Percolation

Network Science

4 Quantum Causal Set Dynamics via Action Integral

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

5 Summary and Conclusions

Summary and
Conclusions

Time as Unfolding of (a Quantum) Process: Results

Time as Unfolding
of (a Quantum)
Process

D Rideout

‘Pre-Quantum’ :

- Cyclic cosmology with evolving ‘coupling constants’
- Gives rise to deSitter like early universe
- Gives rise to ‘internal time’ within Complex Networks (e.g. Internet)

Quantum :

- When do the Kleitman-Rothschild causets dominate? (in volume-time, n)
- Are almost all histories roughly time-reversal symmetric?
- Is the dynamics able to escape from the Kleitman-Rothschild super-exponential dominance?
- Is there current observational evidence hinting at quantum cosmology of this form?

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

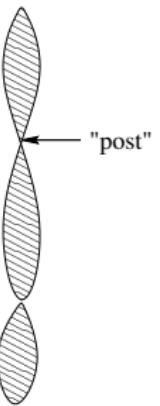
Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral


Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Structure of Transitive Percolation

Time as Unfolding
of (a Quantum)
Process

- Completely homogeneous : future of an element is independent of anything spacelike to it
- Due to random fluctuations, however, appears inhomogeneous in time

- 'Originary' dynamics subsequent to post : Each newborn element must connect to at least one other element
- Universe expands to volume $\sim 1/p$

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Cosmic Renormalization

- Growth dynamics formally Markovian, because entire past history is taken as current state, however has long memory
- ‘Cosmic renormalization’: Can describe growth of subsequent cycles as new (originary) dynamics, with renormalized parameters (t_n)
- Transitive percolation is unique fixed point of cosmic renormalization
- Attractive fixed point, no cycles (pointwise convergence)
- Known that $t_n = (\alpha / \ln n)^n$, $\alpha \geq \pi^2 / 6$ contains infinite number of posts.

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

(Denjoe O’Connor, Xavier Martin, DR, Rafael Sorkin)
(Avner Ash, Patrick McDonald, Graham Brightwell)

Originary Percolation

Random tree era

Time as Unfolding
of (a Quantum)
Process

D Rideout

- limit $p \ll 1$
- originary — each elt chooses exactly one ancestor
~~ simple model of random tree
- exponential expansion
- future of every element itself originary percolation
⇒ causal set is 0+1 dimensional at smallest scales
- not exactly spacetime manifold of GR

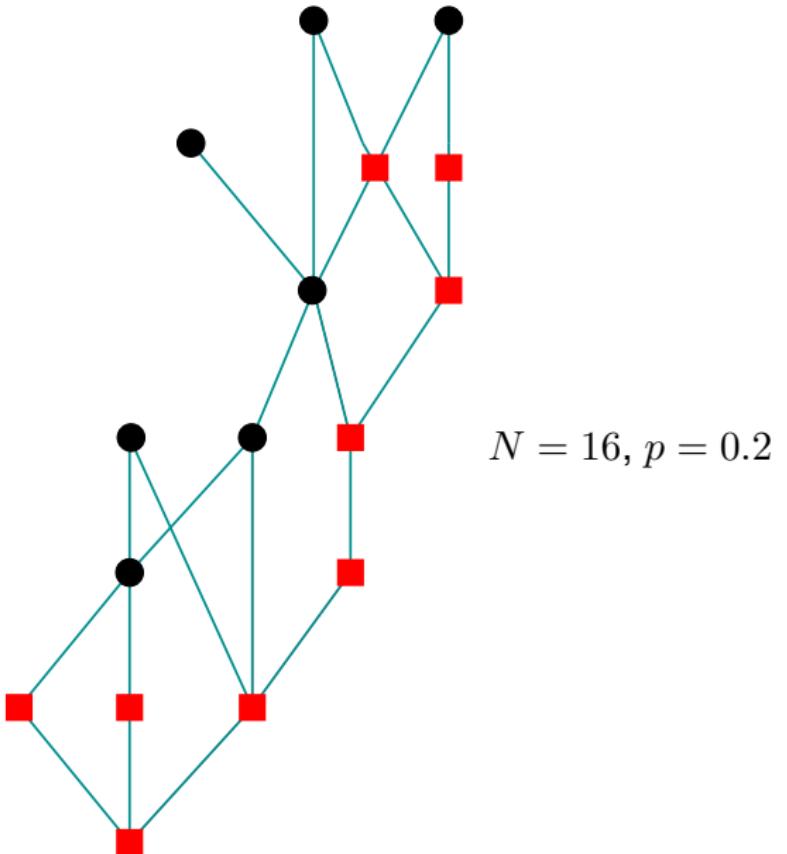
Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results


Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Originary Percolation

Time as Unfolding
of (a Quantum)
Process

D Rideout

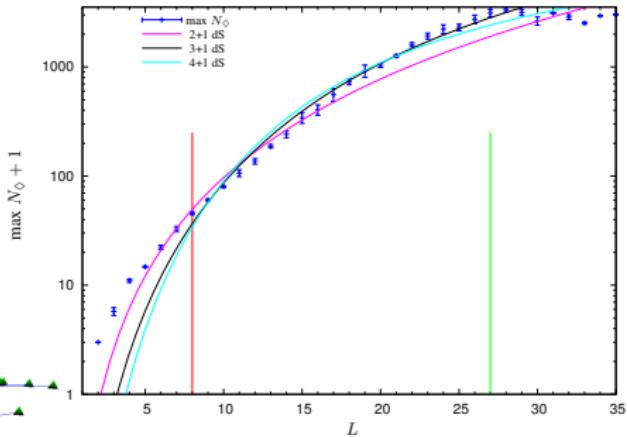
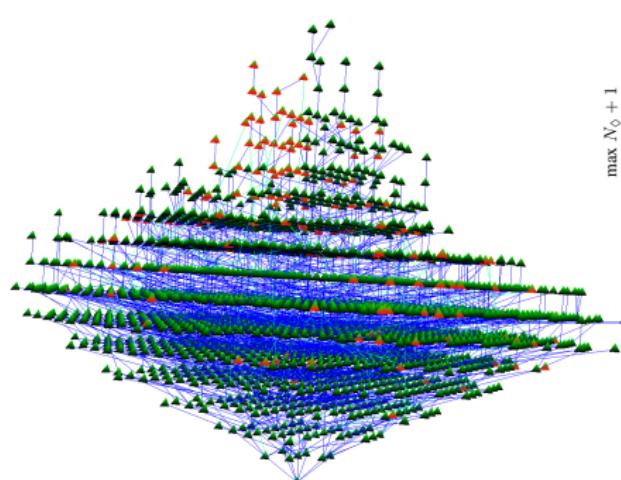
Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results



Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

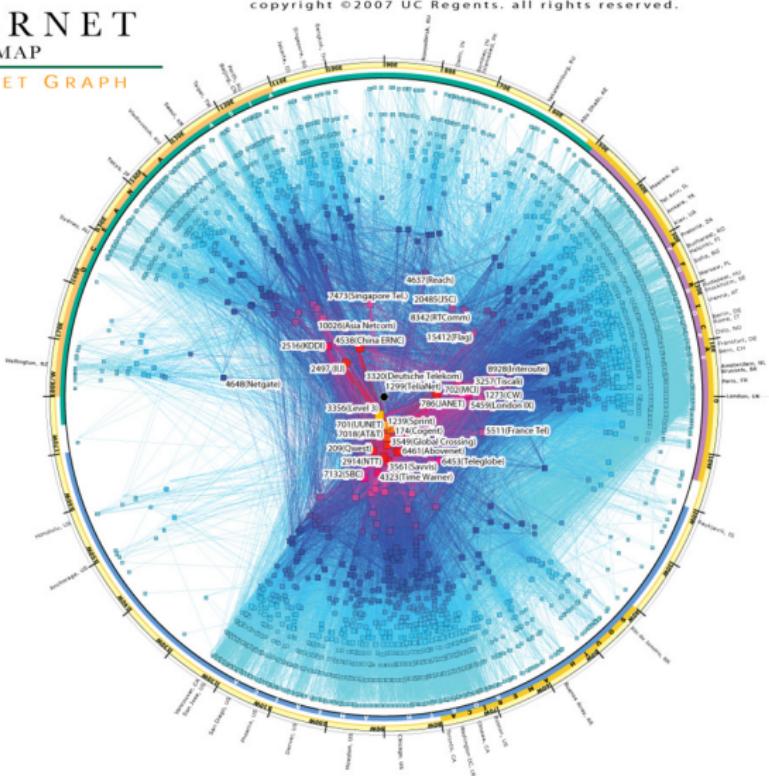
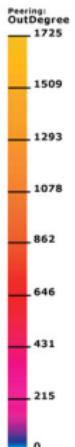
Summary and
Conclusions

Early Universe of Growth Dynamics

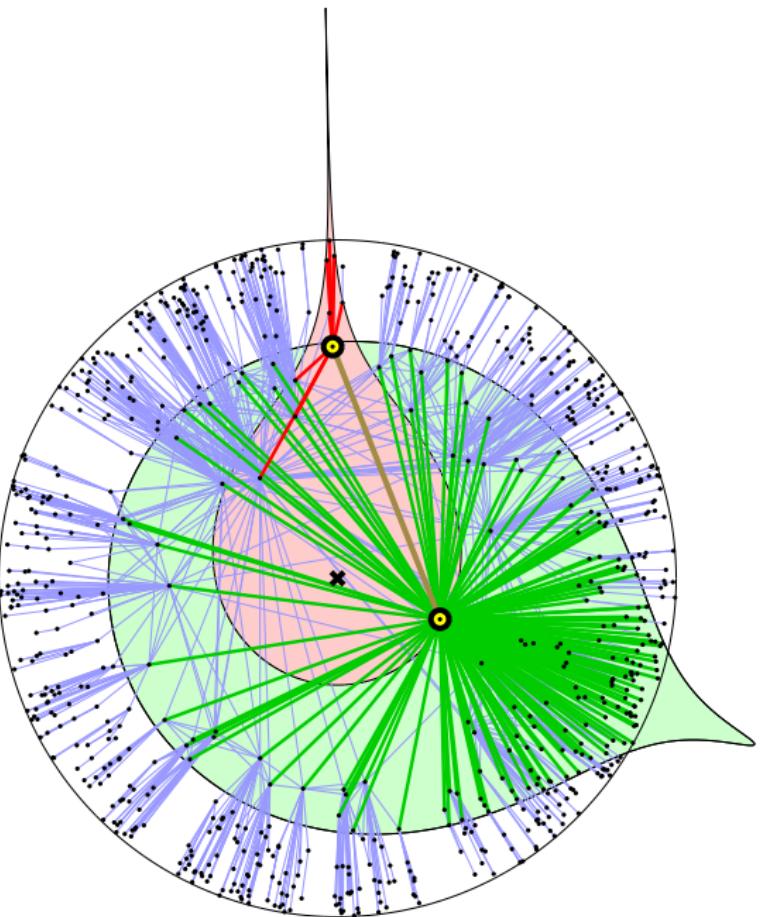
$$\ell = 6.81 \pm .72$$

$$m = 1.926 \pm .023$$

M. Ahmed and DR, *Phys. Rev. D* **81**, 083528 (2010)
arXiv:0909.4771 [gr-qc]



Network Science

Time as Unfolding
of (a Quantum)
Process


D Rideout

IPv4 INTERNET TOPOLOGY MAP

AS-level INTERNET GRAPH

Network Science

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and Conclusions

Network Cosmology

Dmitri Krioukov¹, Maksim Kitsak¹, Robert S. Sinkovits², David Rideout³, David Meyer³ & Marián Boguñá⁴

SUBJECT AREAS:

STATISTICAL PHYSICS,
THERMODYNAMICS AND
NONLINEAR DYNAMICS

THEORETICAL PHYSICS

APPLIED PHYSICS

COSMOLOGY

Received
23 July 2012

Accepted
3 October 2012

Published
16 November 2012

Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

Numerical physics explains complex phenomena in nature by reducing them to an interplay of simple fundamental laws.

Introduction to Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

Summary and Conclusions

Network Science

Time as Unfolding
of (a Quantum)
Process

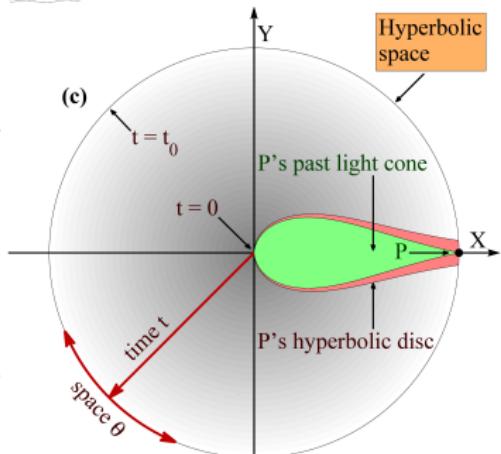
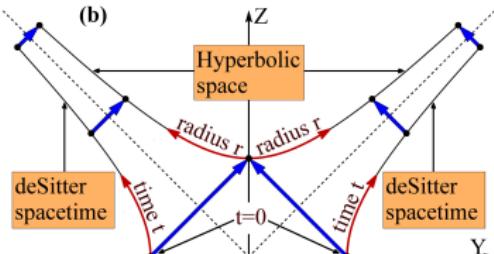
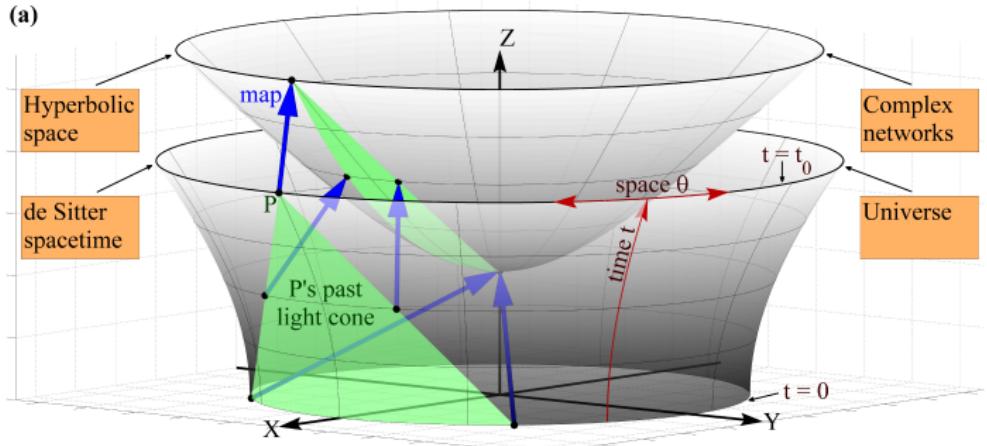
D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics




Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Outline

Time as Unfolding
of (a Quantum)
Process

D Rideout

1 Introduction to Causal Sets

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

2 Dynamics of Causal Sets

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

3 Results

Results

Transitive Percolation

Originary Percolation

Network Science

4 Quantum Causal Set Dynamics via Action Integral

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

5 Summary and Conclusions

Summary and
Conclusions

Path Integral for Gravity

Time as Unfolding
of (a Quantum)
Process

D Rideout

- Lorentzian functional integral for gravity

$$Z = \int_{(M,g)} e^{iS_{\text{EH}}[(M,g)]/\hbar}$$

- Lorentzian ‘path’ sum over causal sets

$$Z = \sum_C e^{iS_{\text{EH}}[C]/\hbar}$$

- Restrict sum to fixed (finite) cardinality
→ Fixed spacetime volume \sim unimodular gravity
- Need expression for $S_{\text{EH}}[C]$

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

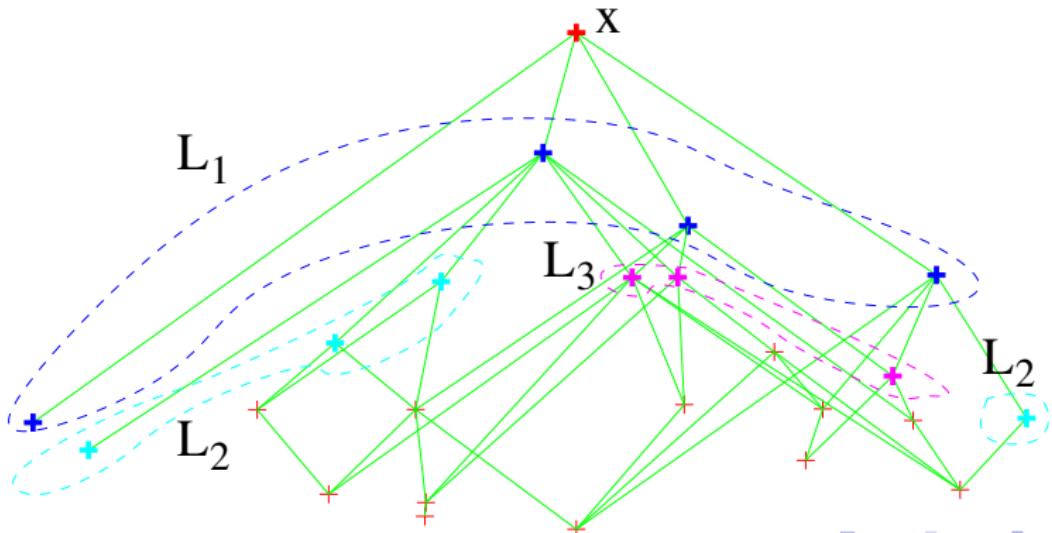
Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

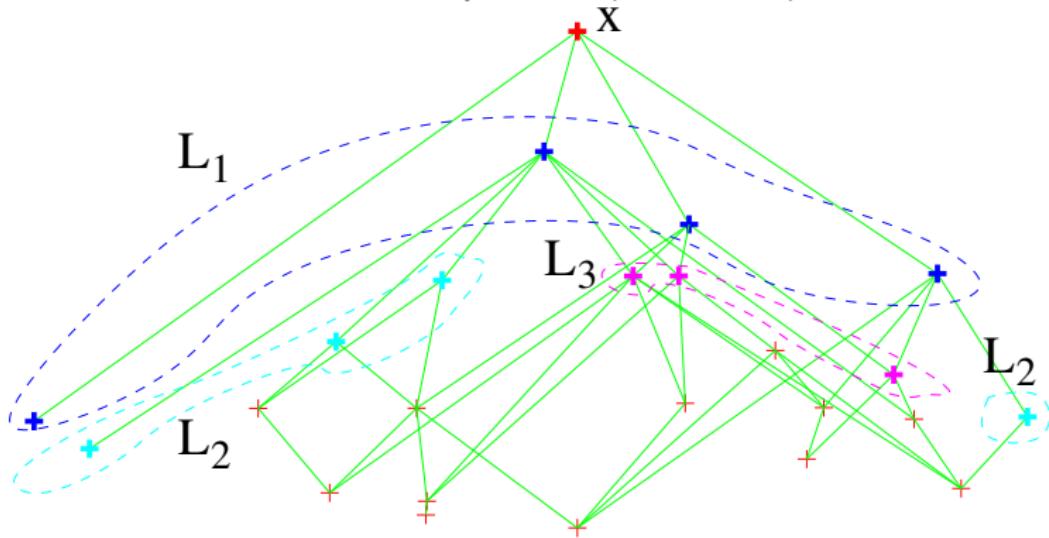
Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions


Discrete \square : Towards an Expression for $S_{\text{EH}}[C]$

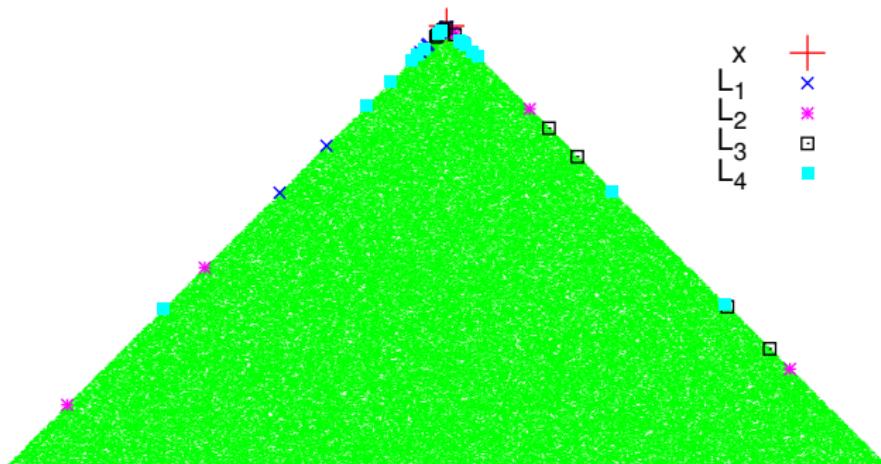
- Discrete D'Alembertian operator (R. Sorkin)

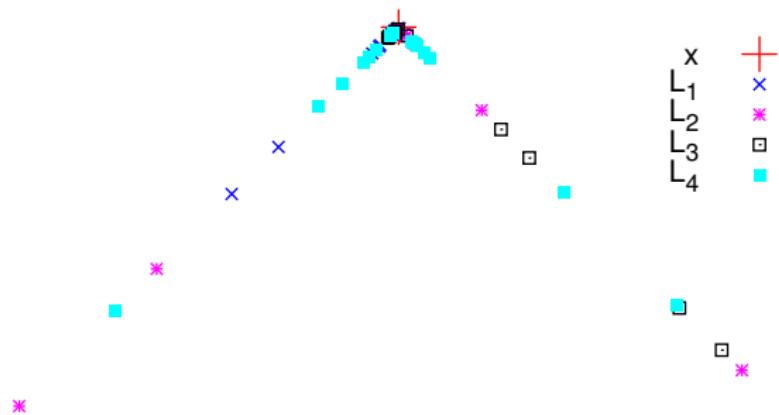
$$\square^{(2)}\phi(x) = \frac{4}{\ell^2} \left(-\frac{1}{2}\phi(x) + \left(\sum_{y \in L_1} -2 \sum_{y \in L_2} + \sum_{y \in L_3} \right) \phi(y) \right)$$


where

$$L_i = \{y \in C | y \prec x \text{ and } N_{\diamond}(y, x) = i - 1\}$$

Discrete \square : Towards an Expression for $S_{\text{EH}}[C]$


- Discrete D'Alembertian operator (R. Sorkin)


- In 4d: (Benincasa-Dowker)

$$\square^{(4)}\phi(x) = \frac{4}{\sqrt{6}\ell^2} \left(-\phi(x) + \left(\sum_{y \in L_1} -9 \sum_{y \in L_2} + 16 \sum_{y \in L_3} - 8 \sum_{y \in L_4} \right) \phi(y) \right)$$

High density $\ell \rightarrow 0$ limit

High density $\ell \rightarrow 0$ limit

Einstein-Hilbert action for Causal Sets

(Benincasa-Dowker PRL Jan 2010)

- In curved spacetime:

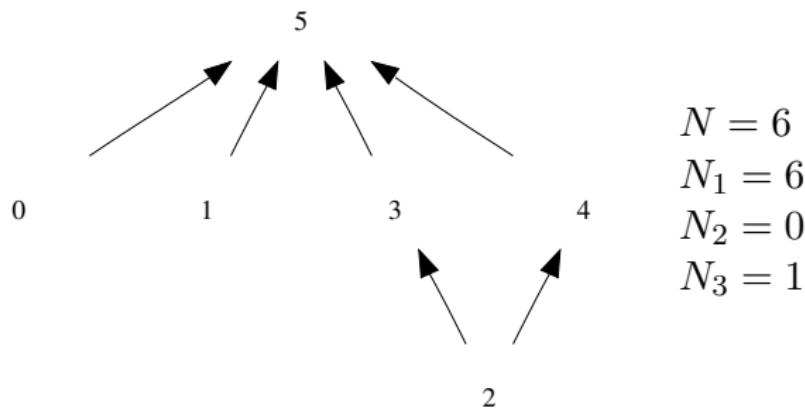
$$\lim_{\ell \rightarrow 0} \langle \square^{(4)} \phi(x) \rangle = \left(\square - \frac{1}{2} R(x) \right) \phi(x)$$

- $\square^{(4)}$ (-2) gives Ricci scalar
- Use to write Einstein-Hilbert action for causal set

$$S_{EH}^{(4)}[C] = O(1)(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))$$

where $N_i(C) = |\{x, y \in C \mid N_{\diamond}(x, y) = i - 1\}|$

- Expression for path sum for causal sets, appropriate to 4d:


$$Z = \sum_{C \in \mathcal{C}} e^{i\tilde{\beta}(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))}$$

Einstein-Hilbert action for Causal Sets

(Benincasa & Dowker PRL Jan 2010)

- Expression for (4d) path sum for causal sets:

$$Z = \sum_{C \in \mathcal{C}} e^{iS_{\text{EH}}[C]/\hbar} = \sum_{C \in \mathcal{C}} e^{i\tilde{\beta}(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))}$$

Generalized 'Wick Rotation'

Time as Unfolding
of (a Quantum)
Process

D Rideout

- Usual approach is to perform Wick rotation $t \rightarrow it$
- Alternative: Analytically continue coefficient $\tilde{\beta} \mapsto i\beta$
Casts sum into thermodynamic partition function

$$Z = \sum_{C \in \mathcal{C}} e^{-\beta(N(C) - N_1(C) + 9N_2(C) - 16N_3(C) + 8N_4(C))}$$

- \leadsto 'Euclidean' sum, can be analyzed numerically using Metropolis Monte Carlo techniques

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Markov Chain Monte Carlo on Causal Sets

(J. Henson, DR, R. Sorkin, S. Surya)

Time as Unfolding
of (a Quantum)
Process

D Rideout

- Markov Chain: random walk on set of ‘states’, governed by mixing matrix M

- Theorem: If M satisfies

- Ergodicity
- Detailed balance

$$\Pr(C_1)\Pr(C_1 \rightarrow C_2) = \Pr(C_2)\Pr(C_2 \rightarrow C_1)$$

then, independently of initial state, at late times probability to visit state C is $\Pr(C)$

- Metropolis Monte Carlo over (naturally labeled) partial orders ($x \prec y \implies x < y$)
- Found two moves which satisfy these conditions
→ Use uniform mixture of two moves
- Transitivity — must enforce non-local constraint on relations
- Define *link* $x \triangleleft y$: $x \prec y$ and $\{z | x \prec z \prec y\} = \emptyset$

Introduction to
Causal Sets

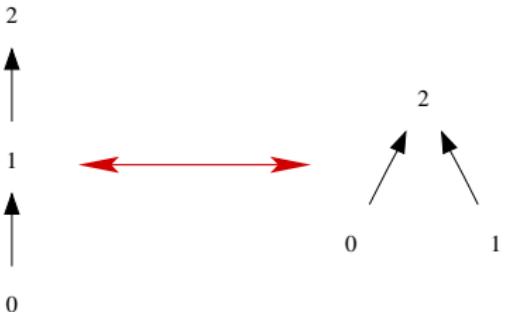
Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

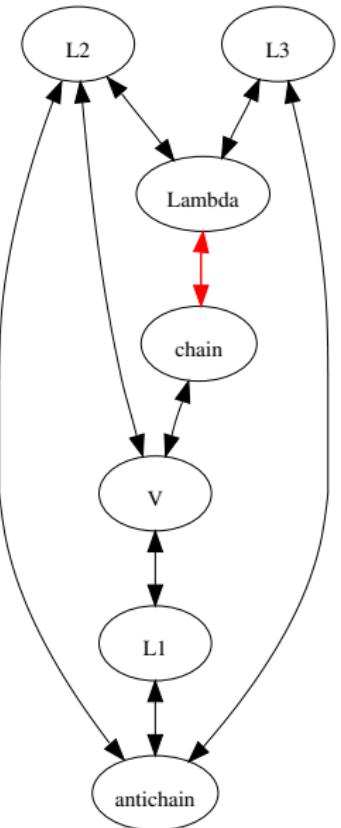
What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

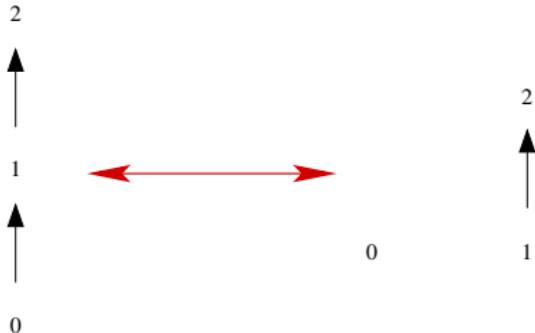
Transitive Percolation
Originary Percolation
Network Science

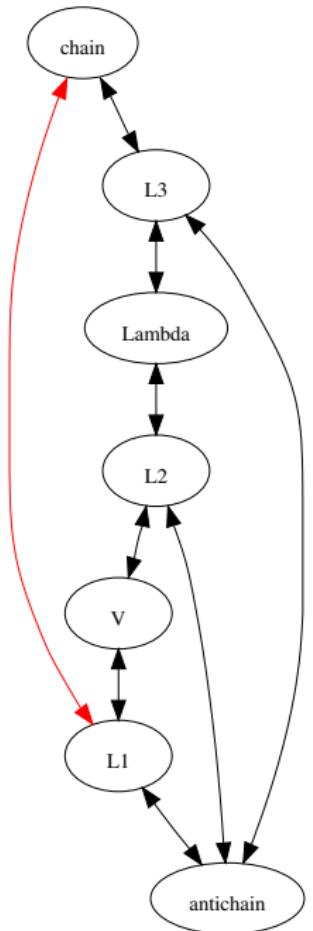

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

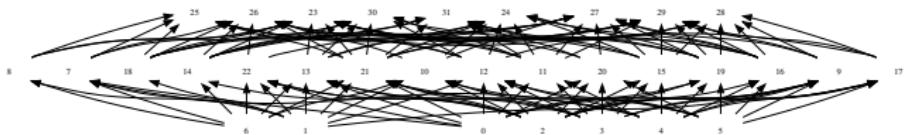

Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions


Relation Move


- If $x \triangleleft y$: Remove single relation
 $x \prec y$
- If $x \not\triangleleft y$ and form *critical pair*
($\text{past}(x) \subseteq \text{past}(y)$ and
 $\text{fut}(y) \subseteq \text{fut}(x)$):
Insert single relation $x \prec y$
- Else do nothing

Link Move



- If $x \triangleleft y$: Remove all relations from $\text{incpast}(x)$ to $\text{incfut}(y)$, save those required by transitivity via other elements
- If $x \not\triangleleft y$, and \nexists links from $\text{incpast}(x)$ to $\text{incfut}(y)$: Insert all relations from $\text{incpast}(x)$ to $\text{incfut}(y)$
- Else do nothing

$\hbar \rightarrow \infty$ Limit

- $\hbar \rightarrow \infty \implies \beta = 0 \rightsquigarrow$ Uniform measure on sample space
- Causal sets on up to 16 elements enumerated explicitly
- Kleitman-Rothschild theorem (Trans. AMS 1975)

- Non-locality / long range interaction \rightsquigarrow How big is big?

In the remainder of this paper we will adopt the convention that any inequality or other statement about functions of n will be meant to be true only for all n sufficiently large, where how large depends on the statement. This will be a convenience since there are so many such statements below.

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

Results

Transitive Percolation

Originary Percolation

Network Science

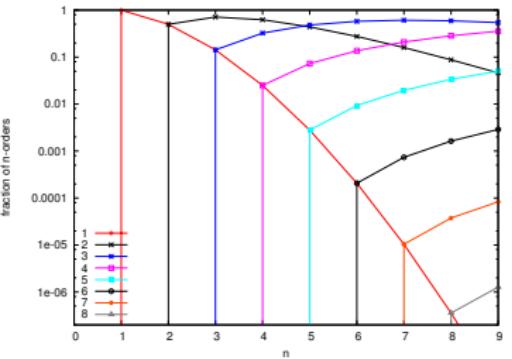
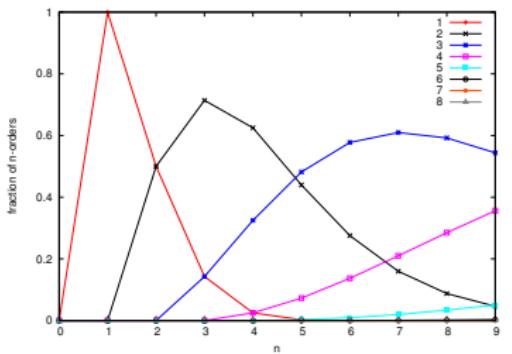
Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β



Observational Cosmology

Summary and
Conclusions

Height distribution for $n \leq 9$

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with Continuum
Clock Time

Dynamics of Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

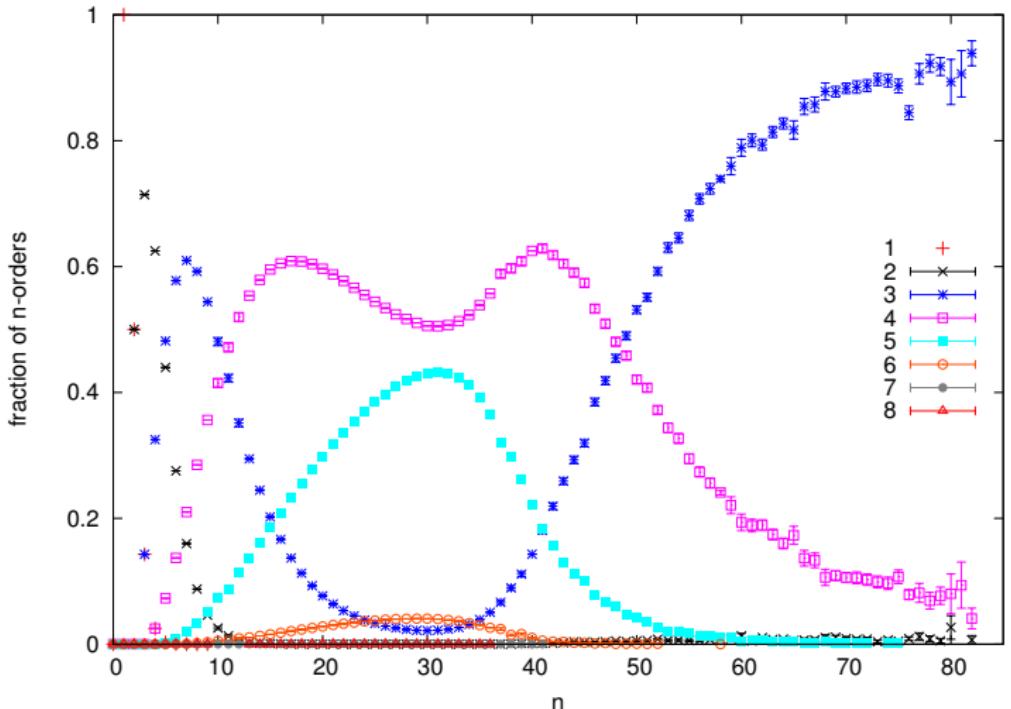
Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo on Causal Sets / Partial Orders
Results

Onset of Asymptotic Regime


Finite β
Observational Cosmology

Summary and Conclusions

Height distribution for $n \leq 82$

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

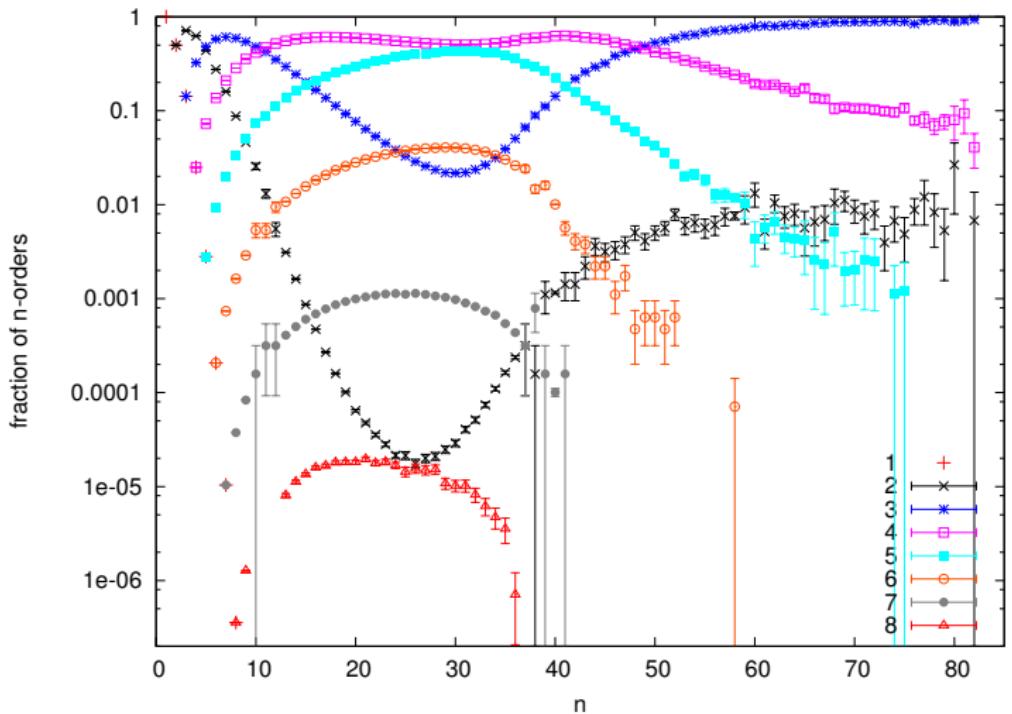
Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results
Onset of Asymptotic
Regime


Finite β
Observational Cosmology

Summary and
Conclusions

Height distribution for $n \leq 82$ (logscale)

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with Continuum
Clock Time

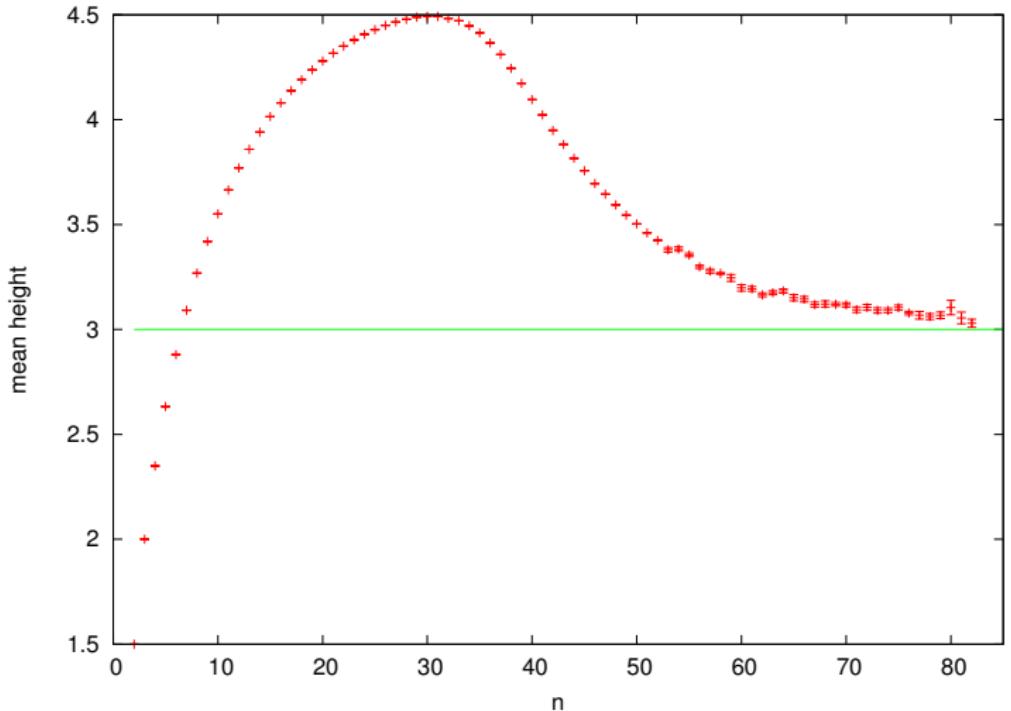
Dynamics of Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral


Markov Chain Monte Carlo on Causal Sets / Partial Orders
Results

Onset of Asymptotic Regime

Finite β
Observational Cosmology

Summary and Conclusions

Mean height for $n \leq 82$

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

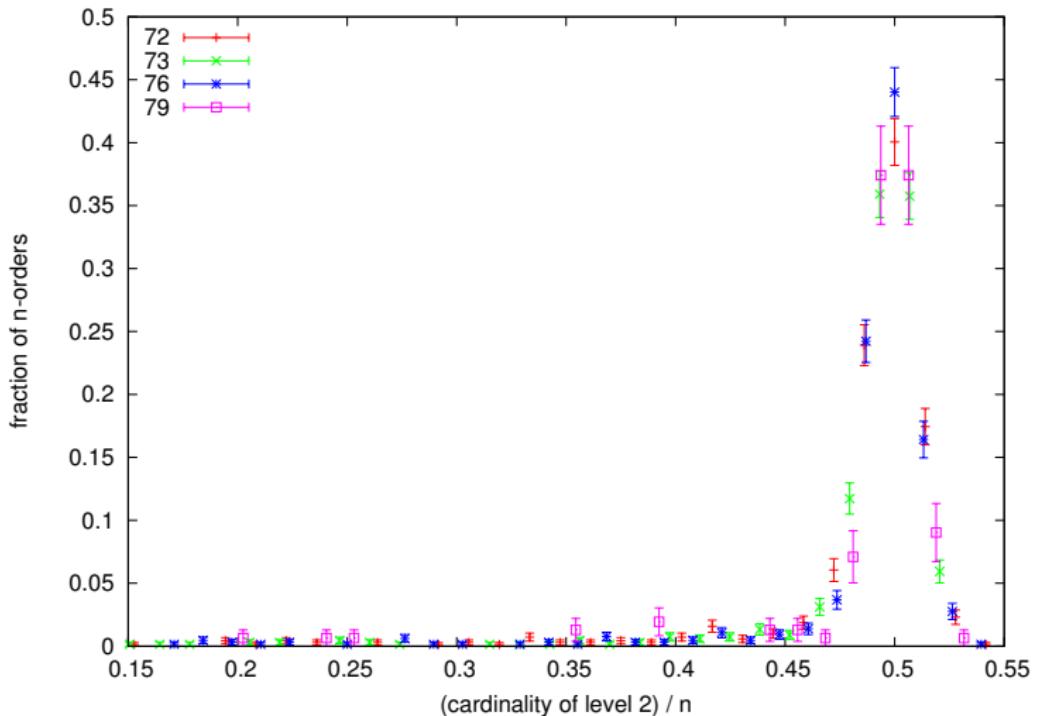
Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results
Onset of Asymptotic
Regime


Finite β
Observational Cosmology

Summary and
Conclusions

Cardinality of Level 2

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

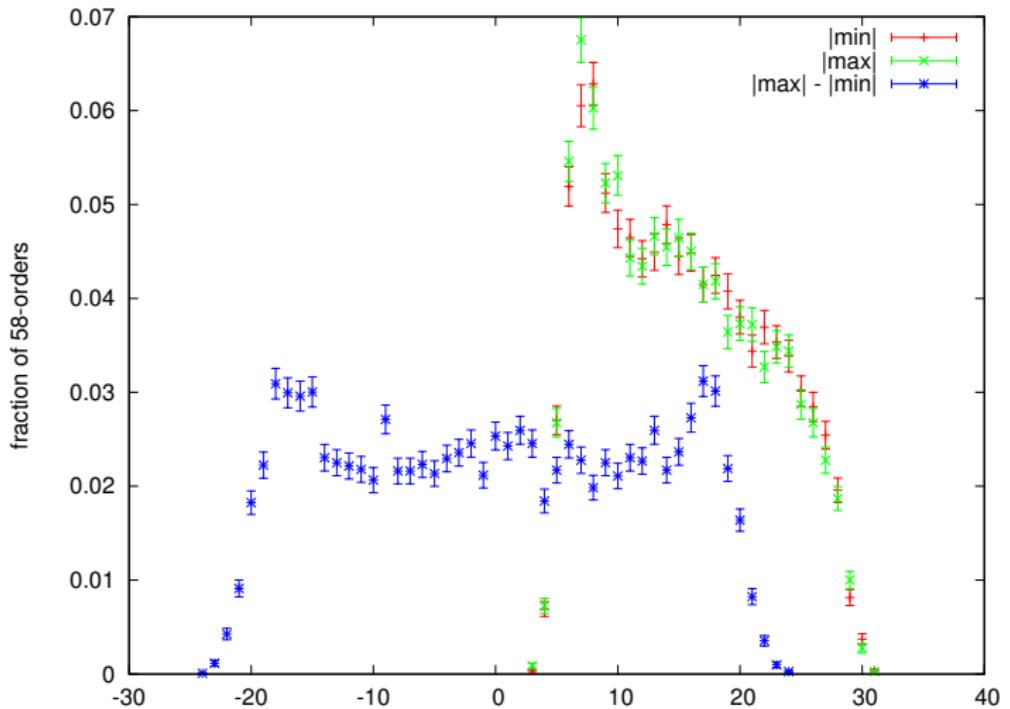
Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results
Onset of Asymptotic
Regime


Finite β
Observational Cosmology

Summary and
Conclusions

Number of minimal and maximal elements

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

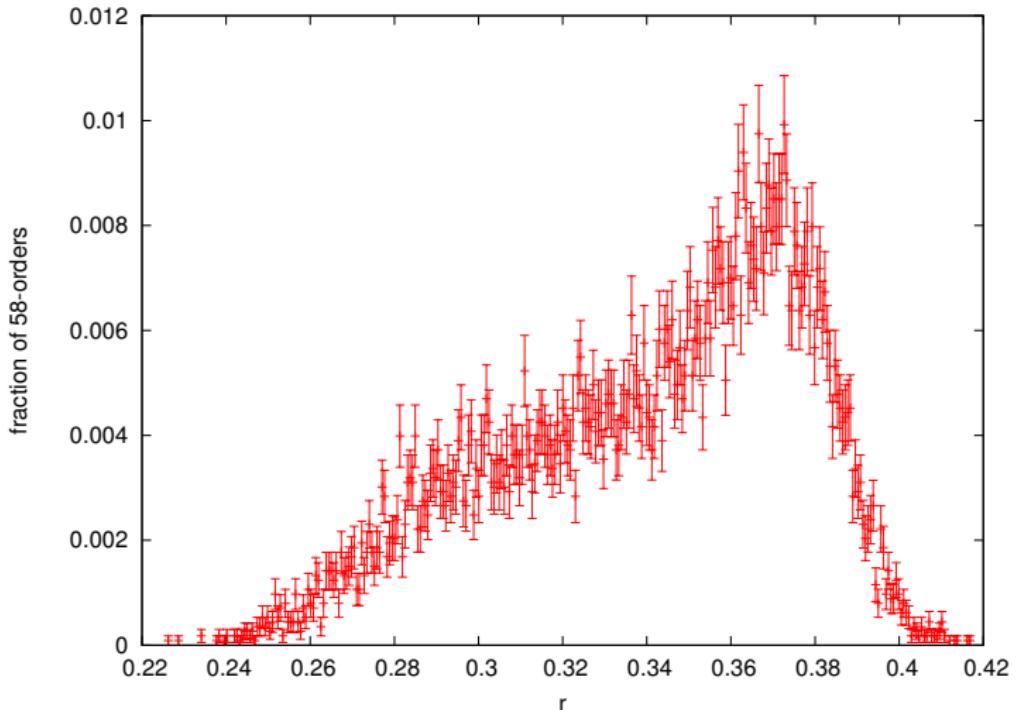
Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral


Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Ordering Fraction

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

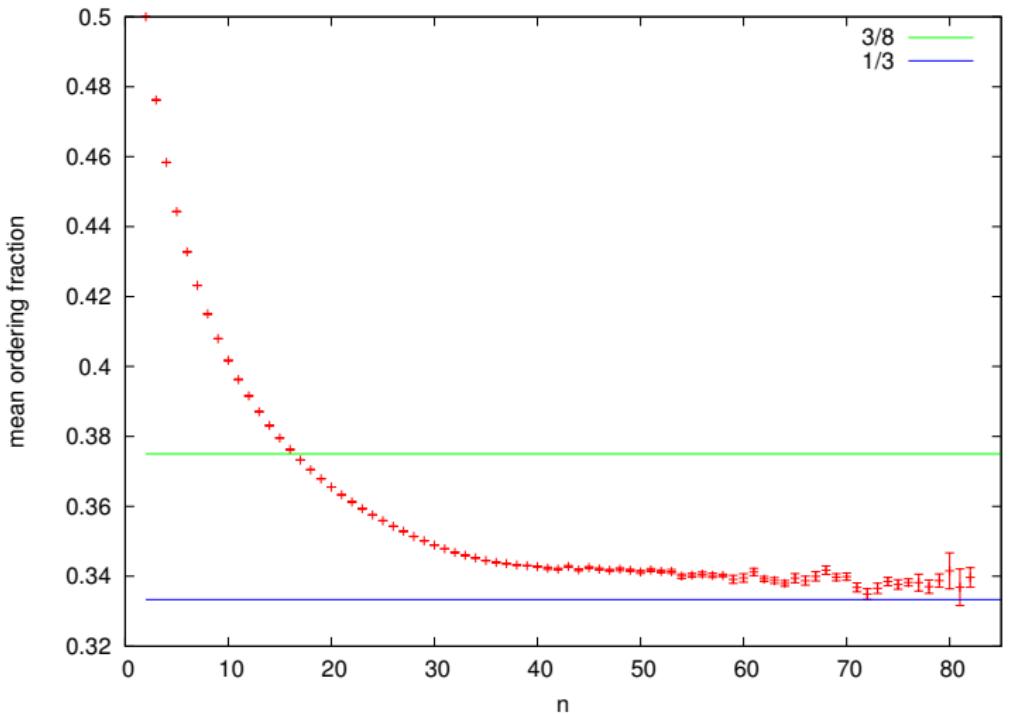
Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results

Onset of Asymptotic
Regime

Finite β


Observational Cosmology

Summary and
Conclusions

Mean ordering fraction for $n \leq 82$

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

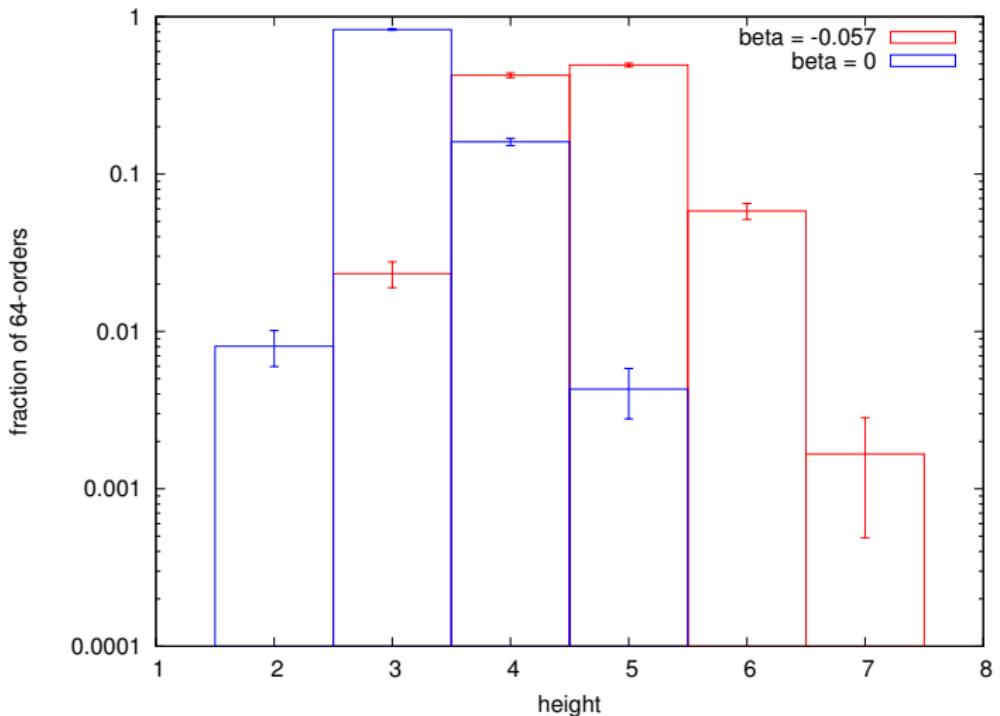
Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results
Onset of Asymptotic
Regime


Finite β
Observational Cosmology

Summary and
Conclusions

Escape from KR orders

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Tension with Λ CDM Concordance Model

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of Causal Sets

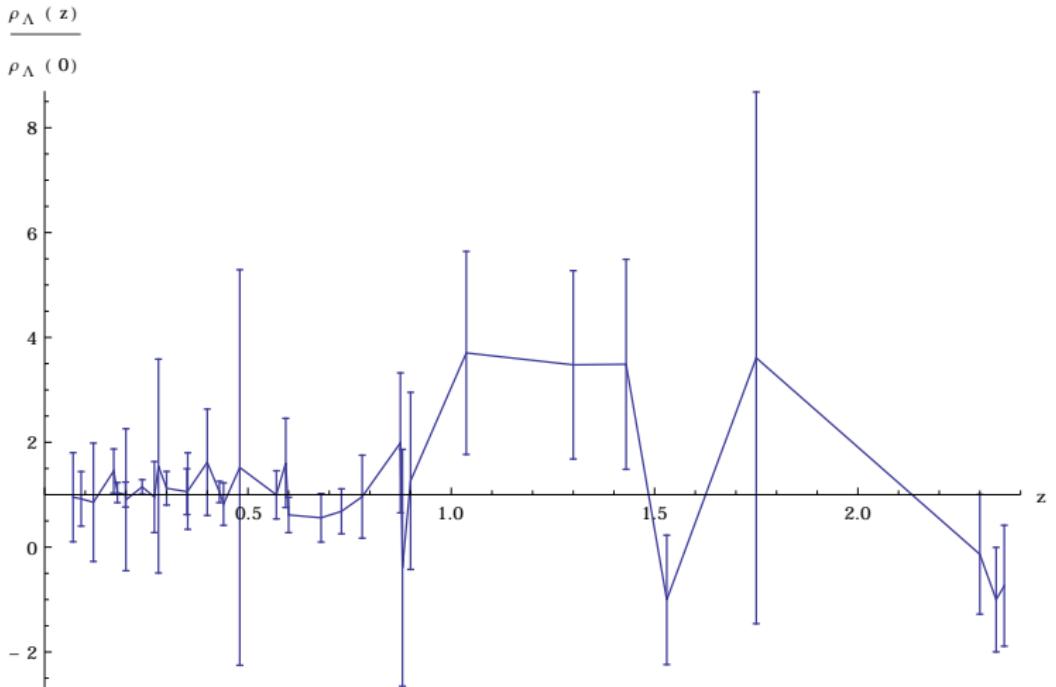
What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal Set Dynamics via Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology


Summary and Conclusions

“Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six parameter model of flat Λ CDM.”

[Wymann, Rudd, Vanderveld, Hu, arXiv:1307.77152
(2 Jan 2014)]

Tension with Λ CDM Concordance Model

Time as Unfolding
of (a Quantum)
Process

[I. Jubb, F. Dowker, private communication, based on
arXiv:1407.5405 [gr-qc]]

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions

Outline

Time as Unfolding
of (a Quantum)
Process

D Rideout

1 Introduction to Causal Sets

Introduction to
Causal Sets

Preliminaries

Definitions

Correspondence with
Continuum

Clock Time

2 Dynamics of Causal Sets

Dynamics of
Causal Sets

What is Dynamics?

Uniform Distribution

Sequential Growth
Dynamics

3 Results

Results

Transitive Percolation

Originary Percolation

Network Science

4 Quantum Causal Set Dynamics via Action Integral

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders

Results

Onset of Asymptotic
Regime

Finite β

Observational Cosmology

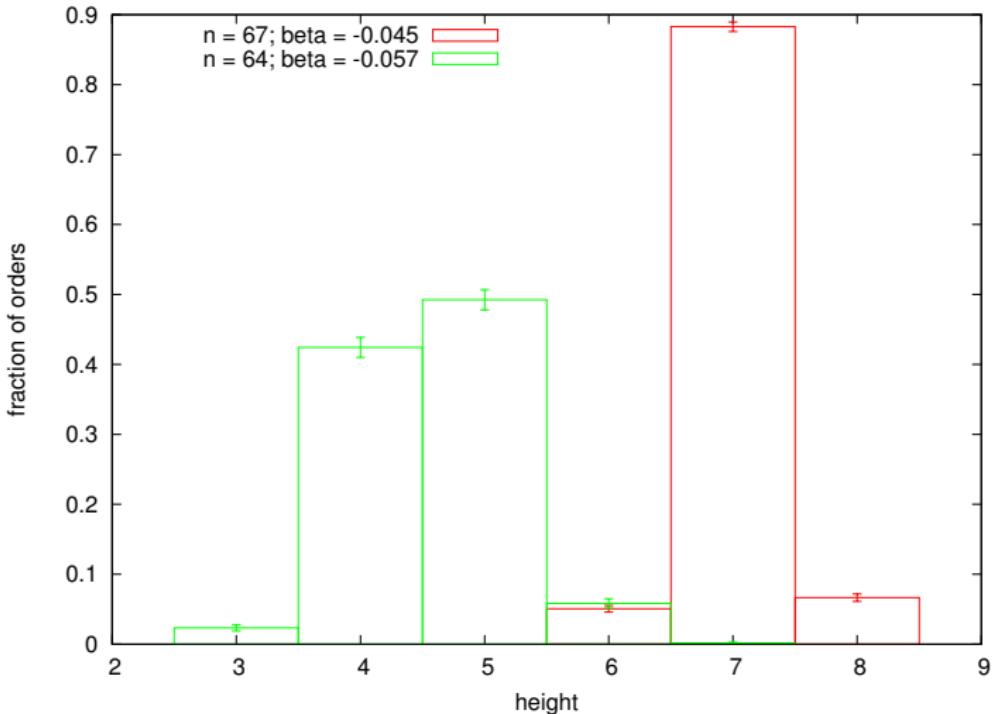
5 Summary and Conclusions

Summary and
Conclusions

Time as Unfolding of (a Quantum) Process

‘Pre-Quantum’ :

- Cyclic cosmology with evolving ‘coupling constants’
- Gives rise to deSitter like early universe
- Gives rise to ‘internal time’ within Complex Networks (e.g. Internet)


Quantum :

- When do the Kleitman-Rothschild causets dominate? (in volume-time, n) \rightsquigarrow For some $n > 100$ perhaps.
- Are almost all histories roughly time-reversal symmetric? \rightsquigarrow No!
- Is the dynamics able to escape from the Kleitman-Rothschild super-exponential dominance?
 \rightsquigarrow Yes!
- Is there current observational evidence hinting at quantum cosmology of this form? \rightsquigarrow Perhaps!

Escape from KR orders

Time as Unfolding
of (a Quantum)
Process

D Rideout

Introduction to
Causal Sets

Preliminaries
Definitions
Correspondence with
Continuum
Clock Time

Dynamics of
Causal Sets

What is Dynamics?
Uniform Distribution
Sequential Growth
Dynamics

Results

Transitive Percolation
Originary Percolation
Network Science

Quantum Causal
Set Dynamics via
Action Integral

Markov Chain Monte Carlo
on Causal Sets / Partial
Orders
Results
Onset of Asymptotic
Regime
Finite β
Observational Cosmology

Summary and
Conclusions