Live Blogging: Bain

Question from Oriti: asymptotic safety people don’t suggest that safety leads to fundamentality. Huggett says he and Weingard argued same thing before. Consensus seems to be that safety does not lead to fundamentality. Butterfield objects that QCD fundamental from perspective that excludes gravity. Fundamental is to be taken wrt to the perspective of the analysis.

Live Blogging: Bain

Question about why relativity of locality: Baker thinks bad for a theory. Advocates see observations of momentum stuff as more fundamental. Butterfield thinks claims applies to classical stuff as well. Darboux’s theorem seems relevant here. Bain says worth thinking about.

Oriti offers motivations: worries about lorentz invariance from fundamental length might lead to attempt to deform the invariance – and that can be done with momentum space curvature; also in simple qg models, can couple point particles to gravity – end up with curved momentum space. These realize relative locality. Bain adds that reason you think you observe locality properties is because the momentum is very low. So only seem like position measurements.

 

Huggett returns to asymptotic safety concerns about why should have same fixed points in GR and QCD. Latter is gaussian, but GR’s should not be. Bain’s concerns orthogonal to this question. 

Live Blogging: Bain

Motivating phase space realism:

Descriptions of systems in terms of energy and momentum more fundamental that spatiotemporal properties. (Amelino-Camelia especially.)

Analogy between relativity of simultaneity and relativity of locality. Latter explained by invariant phase space interval with observer-dependent slicing of phase space.

2 concerns with latter motivation: doesn’t tell us phase space absolute features more fundamental than decomposed bits; global vs local quantity distinction rather than absolute vs relative quantities.

At most uphold momentum space realism rather than phase space realism.

Live Blogging: Bain

Relation to condensed matter approach: CM systems may have analogues to the physics of relative locality.

Both CM versions encode aspect of EFTs in aspects of parameter space topology. Can be related to p-space curvature.

First version: (1) encode low-energy dynamics  in p-space. (2) Stability of low-energy dynamics. (3) Relate topological invariant to p-space curvature.

Second version: (1) encode internal order of condensate in ground state degeneracy (GSD). (2) Demonstrate stability of GSD. (3) Relate GSD to p-space curvature.

Live Blogging: Bain

Moving on to relative locality: (Amelino-Camelia et al. 2011)

Idea: due to curvature of momentum space. Can see this by comparing the phase spaces of special relativity and GR . Momentum space flat. But for theories with relative locality momentum space curved. Suggestion is that this should happen in QG, because perhaps of non-commutative geometry. Also corrections to relativistic particle dynamics.

 

Live Blogging: Bain

Suppose this: EFT and high-energy theory may not need to be related by approximation, but rather emergence. Then perhaps consistent to claim that an AST can emerge in the form of an EFT of a fundamental condensate.

One route: via failure of law-like deducibility (novelty); with ontological distinctness; and ontological dependence. (micro-physicalism from second two)