Wednesday 17 October 2018 at UIC – David Wallace (Southern California): Why black hole information loss is paradoxical
Abstract: I distinguish between two versions of the black hole information-loss paradox. The first arises from apparent failure of unitarity on the space- time of a completely evaporating black hole, which appears to be non- globally-hyperbolic; this is the most commonly discussed version of the paradox in the foundational and semi-popular literature, and the case for calling it ‘paradoxical’ is less than compelling. But the second arises from a clash between a fully-statistical-mechanical interpretation of black hole evaporation and the quantum-field-theoretic description used in derivations of the Hawking effect. This version of the paradox arises long before a black hole completely evaporates, seems to be the version that has played a central role in quantum gravity, and is genuinely paradoxical. After explicating the paradox, I discuss the implications of more recent work on AdS/CFT duality and on the ‘Firewall paradox’, and conclude that the paradox is if anything now sharper. The article is written at a (relatively) introductory level and does not assume advanced knowledge of quantum gravity.
11.15am local Chicago time, 1430 University Hall — or via Skype to the University of Geneva talks in room L208.